A177155 G.f.: exp( Integral (theta_3(x)^8-1)/(16x) dx ), where theta_3(x) = 1 + Sum_{n>=1} 2*x^(n^2) is a Jacobi theta function.
1, 1, 4, 13, 35, 87, 217, 539, 1291, 2999, 6880, 15595, 34738, 76202, 165282, 354655, 752546, 1580514, 3289337, 6787085, 13887937, 28195434, 56824772, 113729640, 226104615, 446665922, 877063515, 1712252521, 3324245063, 6419561961
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 4*x^2 + 13*x^3 + 35*x^4 + 87*x^5 +... log(A(x)) = x + 7*x^2/2 + 28*x^3/3 + 71*x^4/4 + 126*x^5/5 +...+ A008457(n)*x^n/n +...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
nmax = 40; Abs[CoefficientList[Series[Product[1/(1 - x^k)^((-1)^k*k^2), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Apr 10 2019 *) nmax = 40; CoefficientList[Series[Product[(1 + x^(2*k - 1))^((2*k - 1)^2)/(1 - x^(2*k))^(4*k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 10 2019 *)
-
PARI
{a(n)=polcoeff(exp(sum(m=1,n, sumdiv(m,d,(-1)^(m-d)*d^3)*x^m/m)+x*O(x^n)),n)}
-
PARI
{a(n)=local(theta3=1+sum(m=1,sqrtint(2*n+2),2*x^(m^2)+x*O(x^n)));polcoeff(exp(intformal((theta3^8-1)/(16*x))),n)}
Formula
a(n) ~ exp(2*Pi*n^(3/4)/3 - Zeta(3)/Pi^2) / (4*n^(5/8)). - Vaclav Kotesovec, Apr 10 2019
Comments