cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A134343 Expansion of psi(-x)^2 in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 1, -2, 2, 0, 3, -2, 0, -2, 2, -2, 1, -2, 0, -2, 4, 0, 2, 0, 1, -4, 2, 0, 2, -2, 0, -2, 2, -2, 1, -4, 0, 0, 2, 0, 4, -2, 2, -2, 0, 0, 3, -2, 0, -2, 4, 0, 2, -2, 0, -4, 0, 0, 0, -4, 3, -2, 2, 0, 2, -2, 0, 0, 2, -2, 4, -2, 0, -2, 2, 0, 3, -2, 0, 0, 4, 0, 2
Offset: 0

Views

Author

Michael Somos, Oct 21 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 57 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 - 2*x + x^2 - 2*x^3 + 2*x^4 + 3*x^6 - 2*x^7 - 2*x^9 + 2*x^10 + ...
G.f. = q - 2*q^5 + q^9 - 2*q^13 + 2*q^17 + 3*q^25 - 2*q^29 - 2*q^37 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(64), 1), 321); A[2] - 2*A[6] + A[10] - 2*A[14] + 2*A[18] + 3*A[26] - 2*A[30] + 2*A[35] - 2*A[36]; /* Michael Somos, Jun 22 2015 */;
  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 4 n + 1, (-1)^Quotient[#, 2] &]]; (* Michael Somos, Jun 22 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, x^(1/2)]^2 / (2 x^(1/4)), {x, 0, n}]; (* Michael Somos, Jun 22 2015 *)
    a[ n_] := SeriesCoefficient[(QPochhammer[ x] QPochhammer[ x^4] / QPochhammer[ x^2])^2, {x, 0, n}]; (* Michael Somos, Jun 22 2015 *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sumdiv( 4*n + 1, d, (-1)^(d\2)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A) * eta(x^4 + A) / eta(x^2 + A) )^2, n))};
    

Formula

Expansion of q^(-1/4) * (eta(q) * eta(q^4) / eta(q^2))^2 in powers of q.
Euler transform of period 4 sequence [ -2, 0, -2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 8 (t/i) f(t) where q = exp(2 Pi i t).
a(n) = b(4*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 8), b(p^e) = (-1)^e * (e+1) if p == 5 (mod 8).
G.f.: (Product_{k>0} (1 - x^k) * (1 + x^(2*k)))^2.
a(9*n + 5) = a(9*n + 8) = 0. a(n) = (-1)^n * A008441(n). a(2*n) = A113407(n). a(2*n + 1) = -2 * A053692(n).
2 * a(n) = A204531(4*n + 1) = - A246950(n). a(4*n) = A246862(n). a(4*n + 2) = A246683(n). - Michael Somos, Jun 22 2015
a(4*n + 1) = -2 * A259287(n). a(4*n + 3) = -2 * A259285(n). - Michael Somos, Jun 24 2015
Convolution square is A121613. Convolution cube is A213791. Convolution with A000009 is A143379. Convolution with A000143 is A209942. Michael Somos, Jun 22 2015
G.f.: Sum_{k>0 odd} (x^k + x^(3*k)) / (1 + x^(4*k)) * (-1)^floor((k+1) / 4). - Michael Somos, Jun 22 2015
G.f.: Sum_{k>0 odd} (x^k - x^(3*k)) / (1 + x^(4*k)) * (-1)^floor(k / 4). - Michael Somos, Jun 22 2015

A258831 Expansion of (psi(-x^3) * f(-x, x^2))^2 in powers of x where psi(), f(,) are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 3, -4, 5, -8, 7, -8, 9, -10, 14, -12, 16, -14, 15, -20, 17, -18, 19, -24, 26, -22, 23, -28, 25, -32, 32, -28, 29, -30, 38, -32, 33, -40, 40, -44, 42, -38, 39, -40, 57, -42, 43, -44, 45, -62, 47, -56, 49, -56, 62, -52, 53, -60, 64, -68, 64, -58, 59, -60
Offset: 0

Views

Author

Michael Somos, Jun 11 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 3*x^2 - 4*x^3 + 5*x^4 - 8*x^5 + 7*x^6 - 8*x^7 + 9*x^8 + ...
G.f. = q^5 - 2*q^11 + 3*q^17 - 4*q^23 + 5*q^29 - 8*q^35 + 7*q^41 - 8*q^47 + ...
		

Crossrefs

Programs

  • GAP
    List([0..70], n -> (-1)^n*Sigma(6*n+5)/6); # Muniru A Asiru, Jan 30 2018
    
  • Magma
    [(-1)^n*SumOfDivisors(6*n+5)/6: n in [0..70]]; // Vincenzo Librandi, Jan 30 2018
  • Maple
    with(numtheory):
    seq((-1)^(n-1)*sigma(6*n - 1)/6, n=1..10^3); # Muniru A Asiru, Jan 30 2018
  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSigma[ 1, 6 n + 5] / 6];
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^6]^2 QPochhammer[ x, -x] / QPochhammer[ x^3, -x^3])^2, {x, 0, n}];
    Table[(-1)^n DivisorSigma[1, 6 n + 5] / 6, {n, 0, 60}] (* Vincenzo Librandi, Jan 30 2018 *)
  • PARI
    {a(n) = if(n<0, 0, (-1)^n*sigma(6*n+5)/6)};
    
  • PARI
    {a(n) = my(A); if(n<0, 0, A = x*O(x^n); polcoeff((eta(x + A)*eta(x^4 + A)*eta(x^6 + A)^4/(eta(x^2+A)^2*eta(x^3+A)*eta(x^12+A)))^2, n))};
    

Formula

Expansion of (f(-x^6)^2 * chi(x^3) / chi(x))^2 in powers of x where chi(), f() are Ramanujan theta functions.
Expansion of q^(-5/6) * (eta(q) * eta(q^4) * eta(q^6)^4 / (eta(q^2)^2 * eta(q^3) * eta(q^12)))^2 in powers of q.
Euler transform of period 12 sequence [-2, 2, 0, 0, -2, -4, -2, 0, 0, 2, -2, -4, ...].
a(n) = (-1)^n * A098098(n) = A208435(2*n + 1) = A208457(2*n + 1). 6 * a(n) = A121613(3*n + 2).
Convolution square of A258832.

A207541 Expansion of phi(q)^3 * phi(-q) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 4, 0, -16, -8, 24, 0, -32, 24, 52, 0, -48, -32, 56, 0, -96, 24, 72, 0, -80, -48, 128, 0, -96, 96, 124, 0, -160, -64, 120, 0, -128, 24, 192, 0, -192, -104, 152, 0, -224, 144, 168, 0, -176, -96, 312, 0, -192, 96, 228, 0, -288, -112, 216, 0, -288, 192, 320, 0
Offset: 0

Views

Author

Michael Somos, Feb 26 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 4*q - 16*q^3 - 8*q^4 + 24*q^5 - 32*q^7 + 24*q^8 + 52*q^9 - 48*q^11 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, q]^3*EllipticTheta[3, 0, -q], {q, 0, n}]; Table[A207541[n], {n, 0, 50}] (* G. C. Greubel, Dec 16 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^3))^2, n))}

Formula

Expansion of phi(-q^4)^4 + 4 * q * psi(-q^2)^4 = phi(q)^3 * phi(-q) = phi(q)^2 * phi(-q^2)^2 = psi(q)^4 * chi(-q^2)^6 = phi(-q^2)^6 / phi(-q)^2 = f(q)^6 / psi(q)^2 = f(q)^4 * chi(-q^2)^2 in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of (eta(q^2)^7 / (eta(q)^2 * eta(q^4)^3))^2 in powers of q.
Euler transform of period 4 sequence [ 4, -10, 4, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 128 (t/i)^2 g(t) where q = exp(2 Pi i t) and g(t) is g.f. for A112610.
G.f.: Product_{k>0} (1 - x^(2*k))^14 / ((1 - x^k)^4 * (1 - x^(4*k))^6).
a(3*n + 2) = 24 * A208435(n). a(4*n + 2) = 0. a(2*n + 1) = 4 * A121613(n). a(4*n) = A096727(n). a(4*n + 1) = 4 * A112610(n). a(4*n + 3) = -16 * A097723(n). Convolution square of A139093.

A258835 Expansion of psi(x)^3 * psi(x^4) in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 3, 4, 7, 6, 9, 13, 9, 10, 15, 15, 13, 19, 18, 16, 30, 21, 19, 27, 21, 31, 31, 24, 25, 39, 33, 28, 48, 30, 35, 54, 33, 34, 52, 42, 45, 51, 39, 45, 55, 51, 50, 70, 45, 46, 78, 48, 54, 80, 57, 63, 78, 54, 55, 75, 84, 58, 79, 60, 61, 117, 63, 74, 87, 72, 81
Offset: 0

Views

Author

Michael Somos, Jun 11 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 3*x^2 + 4*x^3 + 7*x^4 + 6*x^5 + 9*x^6 + 13*x^7 + 9*x^8 + ...
G.f. = q^7 + 3*q^15 + 3*q^23 + 4*q^31 + 7*q^39 + 6*q^47 + 9*q^55 + 13*q^63 + ...
		

Crossrefs

Programs

  • GAP
    sequence := List([1..10^5],n->Sigma(8*n-1)/8); # Muniru A Asiru, Dec 31 2017
  • Maple
    with(numtheory): seq(sigma(8*n-1)/8, n=1..1000); # Muniru A Asiru, Dec 31 2017
  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSigma[ 1, 8 n + 7] / 8];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x]^3 EllipticTheta[ 2, 0, x^4] / (16 x^(7/4)), {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, sigma(8*n + 7) / 8)};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^8 + A)^2 / (eta(x + A)^3 * eta(x^4 + A)), n))};
    

Formula

Expansion of q^(-7/8) * eta(q^2)^6 * eta(q^8)^2 / (eta(q)^3 * eta(q^4)) in powers of q.
Euler transform of period 8 sequence [ 3, -3, 3, -2, 3, -3, 3, -4, ...].
G.f.: Product_{k>0} (1 - x^(2*k))^4 * (1 + x^k)^3 * (1 + x^(2*k)) * (1 + x^(4*k))^2.
-8 * a(n) = A121613(4*n + 3). a(n) = sigma(8*n + 7) / 8.
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/16 = 0.6168502... (A222068). - Amiram Eldar, Mar 28 2024

A208451 Expansion of phi(q) * phi(-q)^3 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -4, 0, 16, -8, -24, 0, 32, 24, -52, 0, 48, -32, -56, 0, 96, 24, -72, 0, 80, -48, -128, 0, 96, 96, -124, 0, 160, -64, -120, 0, 128, 24, -192, 0, 192, -104, -152, 0, 224, 144, -168, 0, 176, -96, -312, 0, 192, 96, -228, 0, 288, -112, -216, 0, 288, 192, -320
Offset: 0

Views

Author

Michael Somos, Feb 26 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 4*q + 16*q^3 - 8*q^4 - 24*q^5 + 32*q^7 + 24*q^8 - 52*q^9 + 48*q^11 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(16), 2), 58); A[1] - 4*A[2] + 16*A[4] - 8*A[5]; /* Michael Somos, Aug 21 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^2 QPochhammer[ q^2] / QPochhammer[ q^4])^2, {q, 0, n}]; (* Michael Somos, Aug 21 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, if( n%4 == 2, 0, -4 * if( n%2, (-1)^(n\2) * sigma(n), -2 * (-1)^(n\4) * sumdiv( n\4, d, if( d%4, d)))))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^2 + A) / eta(x^4 + A))^2, n))};
    

Formula

Expansion of phi(-q^4)^4 - 4 * q * psi(-q^2)^4 = phi(q) * phi(-q)^3 = phi(-q)^2 * phi(-q^2)^2 = phi(-q^2)^6 / phi(q)^2 = psi(-q)^4 * chi(-q^2)^6 = f(-q)^4 * chi(-q^2)^2 = f(-q)^6 / psi(-q)^2 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (eta(q)^2 * eta(x^2) / eta(x^4))^2 in powers of q.
Euler transform of period 4 sequence [ -4, -6, -4, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 5128 (t/i)^2 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A097723.
a(4*n + 2) = 0. a(2*n + 1) = -4 * A121613(n). a(4*n) = A096727(n). a(4*n + 1) = -4 * A112610(n). a(4*n + 3) = 16 * A097723(n). a(8*n) = A004011(n). a(8*n + 4) = -8 * A008438(n).
Showing 1-5 of 5 results.