A127954 Triangle, A097805 * A127648.
1, 0, 2, 0, 2, 3, 0, 2, 6, 4, 0, 2, 9, 12, 5, 0, 2, 12, 24, 20, 6, 0, 2, 15, 40, 50, 30, 7, 0, 2, 18, 60, 100, 90, 42, 8, 0, 2, 21, 84, 175, 210, 147, 56, 9, 0, 2, 24, 112, 280, 420, 392, 224, 72, 10
Offset: 1
Examples
First few rows of the triangle are: 1; 0, 2; 0, 2, 3; 0, 2, 6, 4; 0, 2, 9, 12, 5; 0, 2, 12, 24, 20, 6; 0, 2, 15, 40, 50, 30, 7; ... T(4,3)=12. Place 4 unlabeled balls into 2 labeled boxes then make compositions of the integer number of balls in each box so that there are a total of 3 parts. /**** 3 ways since there are 3 compositions of 4 into 3 parts. */*** 2 ways 1;1+2 and 1;2+1 **/** 2 ways 2;1+1 and 1+1;2. ***/* 2 ways as above. ****/ 3 ways as above. 3+2+2+2+3=12. - _Geoffrey Critzer_, Sep 21 2013
Programs
-
Mathematica
nn=10;a=x/(1-x);CoefficientList[Series[1/(1-y a)^2,{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Sep 21 2013 *)
Formula
E.g.f.: 1/(1 - y*(x/(1-x)))^2. - Geoffrey Critzer, Sep 21 2013
O.g.f.: (1+A001263(x,y))^2, - Vladimir Kruchinin, Oct 15 2020
Comments