cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127964 Number of 0's in the binary expansion of A127962(n).

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 8, 10, 14, 20, 29, 38, 49, 62, 82, 94, 98, 155, 172, 349, 853, 1307, 1768, 2902, 5249, 5344, 5638, 6194, 7238, 21367, 41668, 47683, 58618, 63514, 69467, 70538, 133507, 134992, 187159, 493094, 2015698
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

Apparently numbers k such that (2^(2*k+3)+1)/3 is prime. - James R. Buddenhagen, Apr 14 2011 [This is true. See the second formula. - Amiram Eldar, Oct 13 2024]

Crossrefs

Programs

  • Mathematica
    b = {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c], AppendTo[b, c]], {x, 0, 1000}]; a = {}; Do[AppendTo[a, FromDigits[IntegerDigits[b[[x]], 2]]], {x, 1, Length[b]}]; d = {}; Do[AppendTo[d, DigitCount[a[[x]], 10, 0]], {x, 1, Length[a]}]; d
    (Select[Prime[Range[200]], PrimeQ[(2^# + 1)/3] &] - 3)/2 (* Amiram Eldar, Oct 13 2024 *)

Formula

a(n) = A023416(A000979(n)). - Michel Marcus, Nov 07 2013
a(n) = (A000978(n)-3)/2. - Amiram Eldar, Oct 13 2024

Extensions

a(22)-a(29) from Vincenzo Librandi, Mar 31 2012
a(30)-a(41) from Amiram Eldar, Oct 13 2024