cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127978 a(n) = ((15*n + 34)/54)*2^(n-1) - (-1)^(n-1)*(6*n + 5)/27.

Original entry on oeis.org

3, 5, 15, 31, 75, 163, 367, 799, 1747, 3771, 8119, 17367, 37019, 78579, 166271, 350735, 737891, 1548587, 3242823, 6776903, 14136363, 29437795, 61205775, 127071871, 263464435, 545570203, 1128423127, 2331411639, 4811954107
Offset: 2

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

In the Bosma's paper there is an error (see table of the first few values at p. 37): for n=1 ((15*n+34)/54)*2^(n-1)-(-1)^(n-1)*(6*n+5)/27 is 1/2 and not 1.

Crossrefs

Programs

  • Magma
    I:=[3, 5, 15, 31]; [n le 4 select I[n] else 2*Self(n-1) + 3*Self(n-2) -4*Self(n-3) -4*Self(n-4): n in [1..30]]; // G. C. Greubel, May 07 2018
  • Mathematica
    Table[((15n+34)/54)2^(n-1) -((-1)^(n-1))(6n+5)/27, {n, 2, 50}]
    LinearRecurrence[{2,3,-4,-4}, {3, 5, 15, 31}, 50] (* G. C. Greubel, May 07 2018 *)
  • PARI
    x='x+O('x^30); Vec(x^2*(3-x-4*x^2-2*x^3)/((1+x)^2*(1-2*x)^2)) \\ G. C. Greubel, May 07 2018
    

Formula

G.f.: x^2*(3-x-4*x^2-2*x^3)/((1+x)^2*(1-2*x)^2). - Colin Barker, Apr 02 2012

Extensions

Offset changed from 1 to 2 (according to Bosma's Proposition 5) from Bruno Berselli, Apr 02 2012