cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128082 A diagonal of the triangle A128080 of coefficients of q in the q-analog of the odd double factorials: a(n) = A128080(n+1,n).

Original entry on oeis.org

1, 1, 3, 9, 31, 110, 400, 1477, 5516, 20775, 78762, 300179, 1148995, 4413877, 17007798, 65707390, 254430080, 987162527, 3836843836, 14936223511, 58226118626, 227271470103, 888117198666, 3474154716353, 13603246639501, 53310945927025, 209093495360796
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Examples

			a(n) is the n-th term in the q-analog of odd double factorial (2n+1)!!, in which the coefficients of q (triangle A128080) begin:
   1;
  (1);
   1,(1),1;
   1,2,(3),3,3,2,1;
   1,3,6,(9),12,14,15,14,12,9,6,3,1;
   1,4,10,19,(31),45,60,74,86,94,97,94,86,74,60,45,31,19,10,4,1;
The terms enclosed in parenthesis are initial terms of this sequence.
		

Crossrefs

Cf. A001147 ((2n-1)!!); A128080 (triangle), A128081 (central terms).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          simplify(b(n-1)*(1-q^(2*n-1))/(1-q)))
        end:
    a:= n-> coeff(b(n+1), q, n):
    seq(a(n), n=0..28);  # Alois P. Heinz, Sep 22 2021
  • Mathematica
    a[n_] := SeriesCoefficient[Product[(1-q^(2k-1))/(1-q), {k, 1, n+1}], {q, 0, n}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 31 2021 *)
  • PARI
    a(n)=if(n<1,0,polcoeff(prod(k=1,n,(1-q^(2*k-1))/(1-q)),n-1,q))

Formula

a(n+1) = A181971(2*n,n). - Reinhard Zumkeller, Jul 09 2012
a(n) ~ c * 2^(2*n) / sqrt(n), where c = QPochhammer(1/2, 1/4) / sqrt(Pi) = 0.236633772766964806372497000634617466975260409008748... - Vaclav Kotesovec, Feb 07 2023, updated Mar 17 2024