A128106 Sizes of possible gaps around a Gaussian prime: 1 and the even numbers in A001481.
1, 2, 4, 8, 10, 16, 18, 20, 26, 32, 34, 36, 40, 50, 52, 58, 64, 68, 72, 74, 80, 82, 90, 98, 100, 104, 106, 116, 122, 128, 130, 136, 144, 146, 148, 160, 162, 164, 170, 178, 180, 194, 196, 200, 202, 208, 212, 218, 226, 232, 234, 242, 244, 250, 256, 260, 272, 274
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q=12; imax=2*q^2; lst=Select[Union[Flatten[Table[2*x^2+2*y^2, {x,0,q}, {y,0,x}]]], #<=imax&]; Join[{1},Drop[lst,1]] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
-
Sage
def A128106_list(max): R = []; s = 1; sq = 1 for n in (0..max//2): if n == s: sq += 1; s = sq*sq; for k in range(sq): if is_square(n-k*k): R.append(2*n) break R[0] = 1 return R A128106_list(274) # Peter Luschny, Jun 20 2014
Comments