A128130 Expansion of (1-x)/(1+x^4); period 8: repeat [1,-1,0,0,-1,1,0,0].
1, -1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..8191
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,-1).
Programs
-
Maple
A128130 := proc(n) local m ; m := modp(n,8) ; op(1+m,[1,-1,0,0,-1,1,0,0]) ; end proc: # R. J. Mathar, Feb 24 2015
-
Mathematica
CoefficientList[Series[(1-x)/(1+x^4),{x,0,100}],x] (* Harvey P. Dale, Mar 28 2011 *)
-
Scheme
(define (A128130 n) (list-ref '(1 -1 0 0 -1 1 0 0) (modulo n 8))) ;; Antti Karttunen, Aug 12 2017
Formula
a(n) = (sqrt(2)/4 + 1/2)*cos(3*Pi*n/4) - sqrt(2)*sin(3*Pi*n/4)/4 + (1/2 - sqrt(2)/4)*cos(Pi*n/4) - sqrt(2)*sin(Pi*n/4)/4; a(n) = Im(Sum_{k=0..n} i^(n-k+1)), i=sqrt(-1).
abs(a(n)) = A133872(n). - Wesley Ivan Hurt, Feb 23 2015
Extensions
More terms from Antti Karttunen, Aug 12 2017