cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128135 Row sums of A128134.

Original entry on oeis.org

1, 3, 10, 28, 72, 176, 416, 960, 2176, 4864, 10752, 23552, 51200, 110592, 237568, 507904, 1081344, 2293760, 4849664, 10223616, 21495808, 45088768, 94371840, 197132288, 411041792, 855638016, 1778384896, 3690987520, 7650410496, 15837691904, 32749125632, 67645734912, 139586437120, 287762808832
Offset: 1

Views

Author

Gary W. Adamson, Feb 16 2007

Keywords

Comments

Conjecture: a(n)/a(n-1) tends to sqrt(5). (E.g., a(10)/a(9) = 2.235294....)
The conjecture is false. The fraction a(n)/a(n-1) tends to 2 as n grows. - Philipp Zumstein (zuphilip(AT)inf.ethz.ch), Oct 05 2009
This sequence is a subsequence of a greedily and recursively defined sequence (see links). - Sela Fried, Aug 30 2024
For n>=2, a(n) is the total number of ones in runs of ones of length >=3 over all binary strings of length n+1. - Félix Balado, Aug 06 2025

Examples

			a(4) = 28 = sum of row 4 of A128134 = 3 + 10 + 11 + 4.
		

Crossrefs

Programs

  • Magma
    I:=[1, 3, 10]; [n le 3 select I[n] else 4*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jun 28 2012
    
  • Mathematica
    CoefficientList[Series[(1-x+2*x^2)/(1-2*x)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 28 2012 *)
    LinearRecurrence[{4,-4},{1,3,10},40] (* Harvey P. Dale, May 26 2023 *)
  • PARI
    a(n)=if(n<=2,[1,3][n],2*a(n-1)+2^(n-1)); /* Joerg Arndt, Sep 29 2012 */

Formula

Row sums of A128134.
Equals A134315 * [1, 2, 3, ...]. - Gary W. Adamson, Oct 19 2007
a(n) = 2*a(n-1) + 2^(n-1) for n >= 2. - Philipp Zumstein (zuphilip(AT)inf.ethz.ch), Oct 05 2009
From Colin Barker, May 29 2012: (Start)
a(n) = 2^(n - 2)*(2*n - 1) for n > 1.
a(n) = 4*a(n-1) - 4*a(n-2) for n > 3.
G.f.: x*(1 - x + 2*x^2)/(1 - 2*x)^2. (End)
G.f.: (1 - G(0))/2 where G(k) = 1 - (2*k + 2)/(1 - x/(x - (k + 1)/G(k+1))) (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
From Amiram Eldar, Aug 05 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*sqrt(2)*arcsinh(1) - 1.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*sqrt(2)*arccot(sqrt(2)) - 1. (End)

Extensions

More terms from Philipp Zumstein (zuphilip(AT)inf.ethz.ch), Oct 05 2009
Incorrect formula deleted by Colin Barker, May 29 2012