A128135 Row sums of A128134.
1, 3, 10, 28, 72, 176, 416, 960, 2176, 4864, 10752, 23552, 51200, 110592, 237568, 507904, 1081344, 2293760, 4849664, 10223616, 21495808, 45088768, 94371840, 197132288, 411041792, 855638016, 1778384896, 3690987520, 7650410496, 15837691904, 32749125632, 67645734912, 139586437120, 287762808832
Offset: 1
Examples
a(4) = 28 = sum of row 4 of A128134 = 3 + 10 + 11 + 4.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Sela Fried, On integer sequence A128135, 2024.
- Sela Fried, Proofs of some Conjectures from the OEIS, arXiv:2410.07237 [math.NT], 2024. See p. 11.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Programs
-
Magma
I:=[1, 3, 10]; [n le 3 select I[n] else 4*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jun 28 2012
-
Mathematica
CoefficientList[Series[(1-x+2*x^2)/(1-2*x)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 28 2012 *) LinearRecurrence[{4,-4},{1,3,10},40] (* Harvey P. Dale, May 26 2023 *)
-
PARI
a(n)=if(n<=2,[1,3][n],2*a(n-1)+2^(n-1)); /* Joerg Arndt, Sep 29 2012 */
Formula
Row sums of A128134.
Equals A134315 * [1, 2, 3, ...]. - Gary W. Adamson, Oct 19 2007
a(n) = 2*a(n-1) + 2^(n-1) for n >= 2. - Philipp Zumstein (zuphilip(AT)inf.ethz.ch), Oct 05 2009
From Colin Barker, May 29 2012: (Start)
a(n) = 2^(n - 2)*(2*n - 1) for n > 1.
a(n) = 4*a(n-1) - 4*a(n-2) for n > 3.
G.f.: x*(1 - x + 2*x^2)/(1 - 2*x)^2. (End)
G.f.: (1 - G(0))/2 where G(k) = 1 - (2*k + 2)/(1 - x/(x - (k + 1)/G(k+1))) (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
From Amiram Eldar, Aug 05 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*sqrt(2)*arcsinh(1) - 1.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*sqrt(2)*arccot(sqrt(2)) - 1. (End)
Extensions
More terms from Philipp Zumstein (zuphilip(AT)inf.ethz.ch), Oct 05 2009
Incorrect formula deleted by Colin Barker, May 29 2012
Comments