cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A128134 A128132 * A007318.

Original entry on oeis.org

1, 1, 2, 2, 5, 3, 3, 10, 11, 4, 4, 17, 27, 19, 5, 5, 26, 54, 56, 29, 6, 6, 37, 95, 130, 100, 41, 7, 7, 50, 153, 260, 265, 162, 55, 8, 8, 65, 231, 469, 595, 483, 245, 71, 9, 9, 82, 332, 784, 1190, 1204, 812, 352, 89, 10
Offset: 1

Views

Author

Gary W. Adamson, Feb 15 2007

Keywords

Comments

A007318 * A128132 = A128133. Row sums = A128135: (1, 3, 10, 28, 72, 176, ...).

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k = 1..n) begins:
  1;
  1,  2;
  2,  5,  3;
  3, 10, 11,   4;
  4, 17, 27,  19,   5;
  5, 26, 54,  56,  29,  6;
  6, 37, 95, 130, 100, 41, 7;
  ...
		

Crossrefs

Formula

A128132 * A007318 as infinite lower triangular matrices (assuming the top of the Pascal triangle A007318 is shifted from (0,0) to (1,1)).
From Petros Hadjicostas, Jul 26 2020: (Start)
T(n,k) = n*binomial(n-1, k-1) - binomial(n-2, k-1)*[n <> k] for 1 <= k <= n, where [ ] is the Iverson bracket.
Bivariate o.g.f.: x*y*(1 - x + x^2*(1 + y))/(1 - x*(1 + y))^2.
T(n,k) = T(n-1,k) + T(n-1,k-1) + binomial(n-1,k-1) for 2 <= k <= n with (n,k) <> (2,2).
T(n,k) = 2*T(n-1,k) - T(n-2,k) - T(n-2,k-2) + 2*T(n-1,k-1) - 2*T(n-2,k-1) for 3 <= k <= n with (n,k) <> (3,3).
T(n,1) = n - 1 for n >= 2.
T(n,2) = A002522(n-1) for n >= 2.
T(n,3) = A164845(n-3) for n >= 3.
T(n,4) = A332697(n-3) for n >= 4.
T(n,n) = n for n >= 1.
T(n,n-1) = A028387(n-2) for n >= 2. (End)

A134315 A134309 * A097806.

Original entry on oeis.org

1, 1, 1, 0, 2, 2, 0, 0, 4, 4, 0, 0, 0, 8, 8, 0, 0, 0, 0, 16, 16, 0, 0, 0, 0, 0, 32, 32, 0, 0, 0, 0, 0, 0, 64, 64
Offset: 1

Views

Author

Gary W. Adamson, Oct 19 2007

Keywords

Comments

A134315 * [1,2,3,...] = A128135: (1, 3, 10 28, 72, 176, 416, ...).
Triangle read by rows given by [1,-1,0,0,0,0,0,0,...] DELTA [1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 20 2007

Examples

			First few rows of the triangle are:
  1;
  1, 1;
  0, 2, 2;
  0, 0, 4, 4;
  0, 0, 0, 8, 8;
  ...
		

Crossrefs

Formula

A134309 * A134315 as infinite lower triangular matrices. Triangle read by rows, for n>1, (n-1) zeros followed by 2^(n-1), 2^(n-1). As an infinite lower triangular matrix, (1, 1, 2, 4, 8, ...) in the main diagonal and (1, 2, 4, 8, ...) in the subdiagonal.
G.f.: (-1-x+x*y)/(-1+2*x*y). - R. J. Mathar, Aug 11 2015

A204204 Triangle based on (0,3/4,1) averaging array.

Original entry on oeis.org

3, 3, 7, 3, 10, 15, 3, 13, 25, 31, 3, 16, 38, 56, 63, 3, 19, 54, 94, 119, 127, 3, 22, 73, 148, 213, 246, 255, 3, 25, 95, 221, 361, 459, 501, 511, 3, 28, 120, 316, 582, 820, 960, 1012, 1023, 3, 31, 148, 436, 898, 1402, 1780, 1972, 2035, 2047, 3, 34, 179
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2012

Keywords

Comments

See A204201 for a discussion and guide to other averaging arrays.

Examples

			First six rows:
3
3...7
3...10...15
3...13...25...31
3...16...38...56...63
3...19...54...94...119..127
		

Crossrefs

Cf. A204201.

Programs

  • Mathematica
    a = 0; r = 3/4; b = 1;
    t[1, 1] = r;
    t[n_, 1] := (a + t[n - 1, 1])/2;
    t[n_, n_] := (b + t[n - 1, n - 1])/2;
    t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2;
    u[n_] := Table[t[n, k], {k, 1, n}]
    Table[u[n], {n, 1, 5}]   (* averaging array *)
    u = Table[3 (1/2) (1/r) 2^n*u[n], {n, 1, 12}];
    TableForm[u]  (* A204204 triangle *)
    Flatten[u]    (* A204204 sequence *)

Formula

From Philippe Deléham, Dec 24 2013: (Start)
T(n,n) = A000225(n+1).
Sum_{k=1..n} T(n,k) = A128135(n+1).
T(n,k)=T(n-1,k)+3*T(n-1,k-1)-2*T(n-2,k-1)-2*T(n-2,k-2), T(1,1)=3, T(2,1)=3, T(2,2)=7, T(n,k)=0 if k<1 or if k>n. (End)

A132344 a(n) = n*2^(floor(n/2)).

Original entry on oeis.org

0, 1, 4, 6, 16, 20, 48, 56, 128, 144, 320, 352, 768, 832, 1792, 1920, 4096, 4352, 9216, 9728, 20480, 21504, 45056, 47104, 98304, 102400, 212992, 221184, 458752, 475136, 983040, 1015808, 2097152, 2162688, 4456448, 4587520, 9437184, 9699328, 19922944, 20447232, 41943040, 42991616
Offset: 0

Views

Author

Simon Plouffe, Nov 19 2007

Keywords

Comments

This sequence is related to a greedily and recursively defined sequence (see links). - Sela Fried, Aug 30 2024

Crossrefs

Programs

  • Maple
    seq(n*2^(floor(n/2)),n=1..120);
  • Mathematica
    Table[n*2^Floor[n/2], {n, 0, 100}] (* Wesley Ivan Hurt, Dec 12 2013 *)
    LinearRecurrence[{0,4,0,-4},{0,1,4,6},50] (* Harvey P. Dale, Aug 27 2022 *)
  • PARI
    a(n) = n*2^(n\2); \\ Michel Marcus, Feb 17 2018

Formula

G.f.: x*(1 + 4*x + 2*x^2)/(1 - 2*x^2)^2. - Ilya Gutkovskiy, Feb 24 2017
a(n) = n*A016116(n). - Michel Marcus, Feb 17 2018
Sum{n>=1} 1/a(n) = sqrt(2)*arcsinh(1) + log(2)/2. - Amiram Eldar, Sep 15 2024

Extensions

More terms from Michel Marcus, Feb 17 2018

A292767 Square array read by antidiagonals downwards: T(k,n) = sum of the site-perimeters of words of length n >= 1 over an alphabet of size k >= 1.

Original entry on oeis.org

4, 6, 10, 8, 28, 18, 10, 72, 74, 28, 12, 176, 281, 152, 40, 14, 416, 1020, 762, 270, 54, 16, 960, 3591, 3664, 1680, 436, 70, 18, 2176, 12366, 17120, 10050, 3238, 658, 88, 20, 4864, 41877, 78336, 58500, 23160, 5677, 944, 108, 22, 10752, 139968, 352768, 333750, 161352, 47236, 9276, 1302, 130
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2017

Keywords

Examples

			Array begins (rows are indexed by k = 1,2,3,4,...; columns by n = 1,2,3,4,...):
   4,   6,    8,    10,     12,      14,       16, ...
  10,  28,   72,   176,    416,     960,     2176, ...
  18,  74,  281,  1020,   3591,   12366,    41877, ...
  28, 152,  762,  3664,  17120,   78336,   352768, ...
  40, 270, 1680, 10050,  58500,  333750,  1875000, ...
  54, 436, 3238, 23160, 161352, 1102464,  7420896, ...
  70, 658, 5677, 47236, 383131, 3049270, 23916361, ...
  ...
		

Crossrefs

Row k=2 is A128135.

Programs

  • Mathematica
    RowGf[k_] := k x (36 + 12k + (8 - 24k - 8k^2) x + (2 - 5k + 4k^2 - k^3) x^2)/(12(1 - k x)^2);
    T[k_, n_] := SeriesCoefficient[RowGf[k], {x, 0, n}];
    Table[T[k - n + 1, n], {k, 1, 10}, {n, k, 1, -1}] // Flatten (* Jean-François Alcover, Aug 27 2019, from PARI *)
  • PARI
    RowGf(k) = {k*x*(36 + 12*k + (8 - 24*k - 8*k^2)*x + (2 - 5*k + 4*k^2 - k^3)*x^2)/(12*(1 - k*x)^2)}
    M(k,n)={Mat(vectorv(k,k,Vec(RowGf(k) + O(x*x^n))))}
    { M(10,8) } \\ Andrew Howroyd, Oct 27 2018

Formula

G.f. of row k: k*x*(36 + 12*k + (8 - 24*k - 8*k^2)*x + (2 - 5*k + 4*k^2 - k^3)*x^2)/(12*(1 - k*x)^2). - Andrew Howroyd, Oct 27 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, Oct 27 2018

A266491 a(n) = n*A130658(n).

Original entry on oeis.org

0, 1, 4, 6, 4, 5, 12, 14, 8, 9, 20, 22, 12, 13, 28, 30, 16, 17, 36, 38, 20, 21, 44, 46, 24, 25, 52, 54, 28, 29, 60, 62, 32, 33, 68, 70, 36, 37, 76, 78, 40, 41, 84, 86, 44, 45, 92, 94, 48, 49, 100, 102, 52, 53, 108, 110, 56, 57, 116, 118, 60, 61, 124, 126, 64
Offset: 0

Views

Author

Paul Curtz, Dec 30 2015

Keywords

Comments

Successive differences:
r(0): 0, 1, 4, 6, 4, 5, 12, 14, ...
r(1): 1, 3, 2, -2, 1, 7, 2, -6, ...
r(2): 2, -1, -4, 3, 6, -5, -8, 7, ... (see A103889)
r(3): -3, -3, 7, 3, -11, -3, 15, 3, ...
r(4): 0, 10, -4, -14, 8, 18, -12, -22, ...
r(5): 10, -14, -10, 22, 10, -30, -10, 38, ...
r(6): -24, 4, 32, -12, -40, 20, 48, -28, ...
r(7): 28, 28, -44, -28, 60, 28, -76, -28, ...
r(8): 0, -72, 16, 88, -32, -104, 48, 120, ...
r(9): -72, 88, 72, -120, -72, 152, 72, -184, ...
r(10): 160, -16, -192, 48, 224, -80, -256, 112, ...
etc.
Let b(n) = 1, 1, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, ..., with n>=0, which is formed from the terms of A011782 repeated twice.
Conjecture: all terms of the row r(i) are divisible by b(i).
Conjecture: the terms of the first column divided by b(n) provide 0, 1, 2, -3, 0, 5, -6, 7, 0, -9, 10, -11, ..., the absolute values of which are listed in A190621.

Crossrefs

Programs

  • Magma
    [n*(3-(-1)^((n-1)*n div 2))/2: n in [0..70]]; // Vincenzo Librandi, Jan 08 2016
  • Mathematica
    Table[n (3 - (-1)^((n - 1) n/2))/2, {n, 0, 55}]
    Table[n (Boole@ OddQ@ Floor[n/2] + 1), {n, 0, 55}] (* or *) Table[SeriesCoefficient[x (3/(1 - x)^2 + 2 x/(1 + x^2)^2 - (1 - x^2)/(1 + x^2)^2)/2, {x, 0, n}], {n, 0, 55}] (* Michael De Vlieger, Jan 04 2016 *)
  • PARI
    vector(60, n, n--; n*(3-(-1)^((n-1)*n/2))/2) \\ Altug Alkan, Jan 04 2016
    

Formula

a(n) = n*(3 - (-1)^((n-1)*n/2))/2.
a(n) = a(n-4) + 4*A130658(n) for n>3.
a(n) = 2*a(n-1) -3*a(n-2) +4*a(n-3) -3*(n-4) +2*a(n-5) -a(n-6) for n>5.
G.f.: x*(3/(1 - x)^2 + 2*x/(1 + x^2)^2 - (1 - x^2)/(1 + x^2)^2)/2. - Michael De Vlieger, Jan 04 2016

Extensions

Edited by Bruno Berselli, Jan 07 2016

A386250 Total number of ones in runs of 1's of length >= 4 over all binary strings of length n.

Original entry on oeis.org

0, 0, 0, 0, 4, 13, 36, 92, 224, 528, 1216, 2752, 6144, 13568, 29696, 64512, 139264, 299008, 638976, 1359872, 2883584, 6094848, 12845056, 27000832, 56623104, 118489088, 247463936, 515899392, 1073741824, 2231369728, 4630511616, 9596567552, 19864223744, 41070624768, 84825604096, 175019917312
Offset: 0

Views

Author

Félix Balado, Aug 14 2025

Keywords

Examples

			For n=6 there are eight binary strings that contain runs of 1s of length >= 4: 001111, 011110, 011111, 101111, 111100, 111101, 111110 and 111111; the runs of length >= 4 in these strings contain a(6) = 36 ones.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence [{4,-4}, {4,13}, 30] (* Hugo Pfoertner, Aug 14 2025 *)

Formula

For n>=4, a(n) = (5*n-12)*2^(n-5).
G.f.: -x^4*(3*x-4)/(2*x-1)^2. - Alois P. Heinz, Aug 14 2025
Showing 1-7 of 7 results.