Original entry on oeis.org
1, 1, 2, 2, 5, 3, 3, 10, 11, 4, 4, 17, 27, 19, 5, 5, 26, 54, 56, 29, 6, 6, 37, 95, 130, 100, 41, 7, 7, 50, 153, 260, 265, 162, 55, 8, 8, 65, 231, 469, 595, 483, 245, 71, 9, 9, 82, 332, 784, 1190, 1204, 812, 352, 89, 10
Offset: 1
Triangle T(n,k) (with rows n >= 1 and columns k = 1..n) begins:
1;
1, 2;
2, 5, 3;
3, 10, 11, 4;
4, 17, 27, 19, 5;
5, 26, 54, 56, 29, 6;
6, 37, 95, 130, 100, 41, 7;
...
Original entry on oeis.org
1, 1, 1, 0, 2, 2, 0, 0, 4, 4, 0, 0, 0, 8, 8, 0, 0, 0, 0, 16, 16, 0, 0, 0, 0, 0, 32, 32, 0, 0, 0, 0, 0, 0, 64, 64
Offset: 1
First few rows of the triangle are:
1;
1, 1;
0, 2, 2;
0, 0, 4, 4;
0, 0, 0, 8, 8;
...
A204204
Triangle based on (0,3/4,1) averaging array.
Original entry on oeis.org
3, 3, 7, 3, 10, 15, 3, 13, 25, 31, 3, 16, 38, 56, 63, 3, 19, 54, 94, 119, 127, 3, 22, 73, 148, 213, 246, 255, 3, 25, 95, 221, 361, 459, 501, 511, 3, 28, 120, 316, 582, 820, 960, 1012, 1023, 3, 31, 148, 436, 898, 1402, 1780, 1972, 2035, 2047, 3, 34, 179
Offset: 1
First six rows:
3
3...7
3...10...15
3...13...25...31
3...16...38...56...63
3...19...54...94...119..127
-
a = 0; r = 3/4; b = 1;
t[1, 1] = r;
t[n_, 1] := (a + t[n - 1, 1])/2;
t[n_, n_] := (b + t[n - 1, n - 1])/2;
t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2;
u[n_] := Table[t[n, k], {k, 1, n}]
Table[u[n], {n, 1, 5}] (* averaging array *)
u = Table[3 (1/2) (1/r) 2^n*u[n], {n, 1, 12}];
TableForm[u] (* A204204 triangle *)
Flatten[u] (* A204204 sequence *)
A132344
a(n) = n*2^(floor(n/2)).
Original entry on oeis.org
0, 1, 4, 6, 16, 20, 48, 56, 128, 144, 320, 352, 768, 832, 1792, 1920, 4096, 4352, 9216, 9728, 20480, 21504, 45056, 47104, 98304, 102400, 212992, 221184, 458752, 475136, 983040, 1015808, 2097152, 2162688, 4456448, 4587520, 9437184, 9699328, 19922944, 20447232, 41943040, 42991616
Offset: 0
- Sela Fried, On integer sequence A128135, 2024.
- Sela Fried, Proofs of some Conjectures from the OEIS, arXiv:2410.07237 [math.NT], 2024. See p. 11.
- Simon Plouffe, Illustration. [broken link]
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-4).
-
seq(n*2^(floor(n/2)),n=1..120);
-
Table[n*2^Floor[n/2], {n, 0, 100}] (* Wesley Ivan Hurt, Dec 12 2013 *)
LinearRecurrence[{0,4,0,-4},{0,1,4,6},50] (* Harvey P. Dale, Aug 27 2022 *)
-
a(n) = n*2^(n\2); \\ Michel Marcus, Feb 17 2018
A292767
Square array read by antidiagonals downwards: T(k,n) = sum of the site-perimeters of words of length n >= 1 over an alphabet of size k >= 1.
Original entry on oeis.org
4, 6, 10, 8, 28, 18, 10, 72, 74, 28, 12, 176, 281, 152, 40, 14, 416, 1020, 762, 270, 54, 16, 960, 3591, 3664, 1680, 436, 70, 18, 2176, 12366, 17120, 10050, 3238, 658, 88, 20, 4864, 41877, 78336, 58500, 23160, 5677, 944, 108, 22, 10752, 139968, 352768, 333750, 161352, 47236, 9276, 1302, 130
Offset: 1
Array begins (rows are indexed by k = 1,2,3,4,...; columns by n = 1,2,3,4,...):
4, 6, 8, 10, 12, 14, 16, ...
10, 28, 72, 176, 416, 960, 2176, ...
18, 74, 281, 1020, 3591, 12366, 41877, ...
28, 152, 762, 3664, 17120, 78336, 352768, ...
40, 270, 1680, 10050, 58500, 333750, 1875000, ...
54, 436, 3238, 23160, 161352, 1102464, 7420896, ...
70, 658, 5677, 47236, 383131, 3049270, 23916361, ...
...
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Aubrey Blecher, Charlotte Brennan, Arnold Knopfmacher, and Toufik Mansour, The Site-Perimeter of Words, Transactions on Combinatorics, Vol. 6 No. 2 (2017), pp. 37-48. ISSN (print): 2251-8657, ISSN (on-line): 2251-8665.
-
RowGf[k_] := k x (36 + 12k + (8 - 24k - 8k^2) x + (2 - 5k + 4k^2 - k^3) x^2)/(12(1 - k x)^2);
T[k_, n_] := SeriesCoefficient[RowGf[k], {x, 0, n}];
Table[T[k - n + 1, n], {k, 1, 10}, {n, k, 1, -1}] // Flatten (* Jean-François Alcover, Aug 27 2019, from PARI *)
-
RowGf(k) = {k*x*(36 + 12*k + (8 - 24*k - 8*k^2)*x + (2 - 5*k + 4*k^2 - k^3)*x^2)/(12*(1 - k*x)^2)}
M(k,n)={Mat(vectorv(k,k,Vec(RowGf(k) + O(x*x^n))))}
{ M(10,8) } \\ Andrew Howroyd, Oct 27 2018
Original entry on oeis.org
0, 1, 4, 6, 4, 5, 12, 14, 8, 9, 20, 22, 12, 13, 28, 30, 16, 17, 36, 38, 20, 21, 44, 46, 24, 25, 52, 54, 28, 29, 60, 62, 32, 33, 68, 70, 36, 37, 76, 78, 40, 41, 84, 86, 44, 45, 92, 94, 48, 49, 100, 102, 52, 53, 108, 110, 56, 57, 116, 118, 60, 61, 124, 126, 64
Offset: 0
-
[n*(3-(-1)^((n-1)*n div 2))/2: n in [0..70]]; // Vincenzo Librandi, Jan 08 2016
-
Table[n (3 - (-1)^((n - 1) n/2))/2, {n, 0, 55}]
Table[n (Boole@ OddQ@ Floor[n/2] + 1), {n, 0, 55}] (* or *) Table[SeriesCoefficient[x (3/(1 - x)^2 + 2 x/(1 + x^2)^2 - (1 - x^2)/(1 + x^2)^2)/2, {x, 0, n}], {n, 0, 55}] (* Michael De Vlieger, Jan 04 2016 *)
-
vector(60, n, n--; n*(3-(-1)^((n-1)*n/2))/2) \\ Altug Alkan, Jan 04 2016
A386250
Total number of ones in runs of 1's of length >= 4 over all binary strings of length n.
Original entry on oeis.org
0, 0, 0, 0, 4, 13, 36, 92, 224, 528, 1216, 2752, 6144, 13568, 29696, 64512, 139264, 299008, 638976, 1359872, 2883584, 6094848, 12845056, 27000832, 56623104, 118489088, 247463936, 515899392, 1073741824, 2231369728, 4630511616, 9596567552, 19864223744, 41070624768, 84825604096, 175019917312
Offset: 0
For n=6 there are eight binary strings that contain runs of 1s of length >= 4: 001111, 011110, 011111, 101111, 111100, 111101, 111110 and 111111; the runs of length >= 4 in these strings contain a(6) = 36 ones.
-
LinearRecurrence [{4,-4}, {4,13}, 30] (* Hugo Pfoertner, Aug 14 2025 *)
Showing 1-7 of 7 results.
Comments