A128154 a(n) = least k such that the remainder when 14^k is divided by k is n.
13, 3, 11, 5, 33, 10, 1967, 9, 23587, 18, 2733, 46, 17651, 15, 93929, 20, 303, 178, 145, 22, 12901, 58, 2721, 25, 17990951, 27, 143, 36, 85, 166, 646123, 82, 2439143677, 55, 63, 76, 319, 123, 295, 52, 51, 77, 247380287953, 45, 5779134947, 90, 87, 74, 175, 146
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
t = Table[0, {10000} ]; k = 1; While[ k < 3000000000, a = PowerMod[14, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t lk[n_]:=Module[{k=1},While[PowerMod[14,k,k]!=n,k++];k]; Array[lk,20] (* Harvey P. Dale, Aug 17 2013 *)
Extensions
More terms from Ryan Propper, Feb 28 2007
a(43) from Hagen von Eitzen, Aug 16 2009