A128175 Binomial transform of A128174.
1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 8, 8, 7, 4, 1, 16, 16, 15, 11, 5, 1, 32, 32, 31, 26, 16, 6, 1, 64, 64, 63, 57, 42, 22, 7, 1, 128, 128, 127, 120, 99, 64, 29, 8, 1, 256, 256, 255, 247, 219, 163, 93, 37, 9, 1
Offset: 1
Examples
First few rows of the triangle: 1; 1, 1; 2, 2, 1; 4, 4, 3, 1; 8, 8, 7, 4, 1; 16, 16, 15, 11, 5, 1; 32, 32, 31, 26, 16, 6, 1; 64, 64, 63, 57, 42, 22, 7, 1; ... From _Paul Barry_, Oct 02 2010: (Start) Production matrix is 1, 1; 1, 1, 1; 0, 0, 1, 1; 0, 0, 0, 1, 1; 0, 0, 0, 0, 1, 1; 0, 0, 0, 0, 0, 1, 1; 0, 0, 0, 0, 0, 0, 1, 1; 0, 0, 0, 0, 0, 0, 0, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0, 1, 1; ... Matrix logarithm is 0; 1, 0; 1, 2, 0; 1, 1, 3, 0; 1, 1, 1, 4, 0; 1, 1, 1, 1, 5, 0; 1, 1, 1, 1, 1, 6, 0; 1, 1, 1, 1, 1, 1, 7, 0; 1, 1, 1, 1, 1, 1, 1, 8, 0; 1, 1, 1, 1, 1, 1, 1, 1, 9, 0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 0; ... (End) . First few rows of the array: 1, 1, 2, 4, 8, 16, ... 1, 2, 4, 8, 16, 32, ... 1, 3, 7, 15, 31, 63, ... 1, 4, 11, 26, 57, 120, ... 1, 5, 16, 42, 99, 219, ... ...
Programs
-
Maple
A193820 := (n,k) -> `if`(k=0 or n=0, 1, A193820(n-1,k-1)+A193820(n-1,k)); A128175 := (n,k) -> A193820(n-1,n-k); seq(print(seq(A128175(n,k),k=0..n)),n=0..10); # Peter Luschny, Jan 22 2012
-
Mathematica
z = 10; a = 1; b = 1; p[n_, x_] := (a*x + b)^n q[0, x_] := 1 q[n_, x_] := x*q[n - 1, x] + 1; q[n_, 0] := q[n, x] /. x -> 0; t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193820 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A128175 *) (* Clark Kimberling, Aug 06 2011 *) (* function dotTriangle[] is defined in A128176 *) a128175[r_] := dotTriangle[Binomial, If[EvenQ[#1 + #2], 1, 0]&, r] TableForm[a128174[7]] (* triangle *) Flatten[a128174[9]] (* data *) (* Hartmut F. W. Hoft, Mar 15 2017 *)
Formula
Antidiagonals of an array in which the first row = (1, 1, 2, 4, 8, 16, ...); and (n+1)-th row = partial sums of n-th row.
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(4 + 4*x + 3*x^2/2! + x^3/3!) = 4 + 8*x + 15*x^2/2! + 26*x^3/3! + 42*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014
T(n, k) = Sum_{i=0..floor((n-k)/2)} binomial(n-1, k-1+2*i). - Werner Schulte, Mar 05 2025
T(n, k) = binomial(n-1, k-1)*hypergeom([1, (k-n)/2, (1+k-n)/2], [(1+k)/2, k/2], 1). - Stefano Spezia, Mar 07 2025
Comments