cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A064365 a(0) = 0; thereafter a(n) = a(n-1)-prime(n) if positive and new, otherwise a(n) = a(n-1)+prime(n), where prime(n) is the n-th prime.

Original entry on oeis.org

0, 2, 5, 10, 3, 14, 1, 18, 37, 60, 31, 62, 25, 66, 23, 70, 17, 76, 15, 82, 11, 84, 163, 80, 169, 72, 173, 276, 383, 274, 161, 34, 165, 28, 167, 316, 467, 310, 147, 314, 141, 320, 139, 330, 137, 334, 135, 346, 123, 350, 121, 354, 115, 356, 105, 362, 99, 368, 97, 374, 93
Offset: 0

Views

Author

Neil Fernandez, Sep 25 2001

Keywords

Comments

'Recamán transform' (see A005132) of the prime sequence. Note that the definition permits repeated terms [though only by addition] (and there are many repeated terms, just as there are in A005132).
Does every positive integer appear in the sequence? This seems unlikely, since 4 has not appeared in 70000 terms.
Note: this is similar to Clark Kimberling's A022831, except in the latter sequence the words 'and new' have been omitted.
The smallest numbers not occurring in the first million terms: 4, 6, 7, 12, 13, 16, 19, 20, 21, 22, 24, 26, 27, 29, 30, 32, 36, 39, 41, 42. - Reinhard Zumkeller, Apr 26 2012

Examples

			To find a(9) we try subtracting the 9th prime, which is 23, from a(8), which is 37. 37 - 23 = 14, but 14 is already in the sequence (it is a(5)), so we must add. a(9) = 37 + 23 = 60.
		

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, notMember, insert)
    a064365 n = a064365_list !! n
    a064365_list = 0 : f 0 a000040_list (singleton 0) where
       f x (p:ps) s | x' > 0 && x' `notMember` s = x' : f x' ps (insert x' s)
                    | otherwise                  = xp : f xp ps (insert xp s)
                    where x' = x - p; xp = x + p
    -- Reinhard Zumkeller, Apr 26 2012
    
  • Mathematica
    a = {0}; Do[ If[ a[ [ -1 ] ] - Prime[ n ] > 0 && Position[ a, a[ [ -1 ] ] - Prime[ n ] ] == {}, a = Append[ a, a[ [ -1 ] ] - Prime[ n ] ], a = Append[ a, a[ [ -1 ] ] + Prime[ n ] ] ], {n, 1, 70} ]; a (* Modified by Ivan N. Ianakiev, Aug 05 2019, to accommodate the new initial term of a(0). *)
  • PARI
    A064365(N,s/*=1 to print all terms*/)={ my(a=0,u=0); N & forprime(p=1,prime(N), s & print1(a","); u=bitor(u,2^a+=if(a<=p || bittest(u,a-p),p,-p)));a}  \\ M. F. Hasler, Mar 07 2012
    
  • Python
    from sympy import primerange, prime
    def aupton(terms):
      alst = [0]
      for n, pn in enumerate(primerange(1, prime(terms)+1), start=1):
        x = alst[-1] - pn
        alst += [x if x > 0 and x not in alst else alst[-1] + pn]
      return alst
    print(aupton(60)) # Michael S. Branicky, May 30 2021

Formula

a(n) = A117128(n) - 1. - Thomas Ordowski, Dec 05 2016

Extensions

More terms from Robert G. Wilson v, Sep 26 2001
Further terms from N. J. A. Sloane, Feb 10 2002
Added initial term a(0)=0, in analogy with A128204, A005132, A053461, A117073/A078783. - M. F. Hasler, Mar 07 2012
Showing 1-1 of 1 results.