A128218 First differences of A128217.
1, 3, 1, 3, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Haskell
a128218 n = a128218_list !! (n-1) a128218_list = zipWith (-) (tail a128217_list) a128217_list -- Reinhard Zumkeller, Jun 20 2015
-
Mathematica
nsrQ[n_]:=Module[{sr=Sqrt[n]},Abs[First[sr-Nearest[{Floor[sr], Ceiling[ sr]}, sr]]]<1/4];Differences[Select[Range[0,250],nsrQ]] (* Harvey P. Dale, May 02 2012 *)
-
PARI
default(realprecision, 10000); is_A128217(n) = ((abs(sqrt(n)-sqrtint(n))<(1/4)) || (abs(sqrt(n)-(1+sqrtint(n)))<(1/4))); k=0; n=0; prevm=0; while(k<20000, n++; if(is_A128217(n), k++; write("b128218.txt", k, " ", (n-prevm)); prevm = n)); \\ Antti Karttunen, Jan 16 2025
Formula
Let A(1)={1}. Then, for k=2,3,4,..., form A(k) by appending to A(k-1) the term k-1 followed by k-1 1's, if k is even, or by appending to A(k-1) the term k followed by k-1 1's, if k is odd. {a(n)} appears to be the limit of {A(k)} as k->infinity.
Extensions
Offset changed by Reinhard Zumkeller, Jun 20 2015
Comments