cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128245 Smallest of three consecutive composite numbers whose sum is prime.

Original entry on oeis.org

6, 9, 12, 18, 21, 22, 35, 36, 42, 45, 51, 65, 69, 78, 82, 88, 96, 102, 111, 125, 126, 135, 138, 161, 162, 165, 166, 172, 189, 198, 209, 232, 249, 255, 256, 261, 275, 291, 292, 305, 312, 316, 329, 335, 336, 345, 348, 352, 366, 371, 382, 396, 399, 408, 429, 432
Offset: 1

Views

Author

Zak Seidov, May 03 2007

Keywords

Comments

If n is a member of this sequence, either n+1 or n+2 is prime. This suggests that the density of the sequence is roughly kn/log^2 n for some k. Counts up to 10^9 suggest k is about 5.26. - Charles R Greathouse IV, Sep 11 2009

Examples

			6 + 8 + 9 = 23 = A060328(1);
9 + 10 + 12 = 31 = A060328(2);
12 + 14 + 15 = 41 = A060328(3);
18 + 20 + 21 = 59 = A060328(4).
		

Crossrefs

Cf. A060328.

Programs

  • Mathematica
    CompositeNext[n_]:=Module[{k=n+1},While[PrimeQ[k],k++ ];k]; lst={};Do[p=n+CompositeNext[n]+CompositeNext[CompositeNext[n]];If[ !PrimeQ[n]&&PrimeQ[p],AppendTo[lst,n]],{n,2,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
    Select[Partition[Select[Range[500],CompositeQ],3,1],PrimeQ[Total[#]]&][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 24 2019 *)
  • PARI
    test(n)={my(b=a+1,c);b+=isprime(b);c=b+1;c+=isprime(c);isprime(a+b+c)};for(n=4,1e3,if(!isprime(n)&&test(n),print1(n","))) \\ Charles R Greathouse IV, Sep 11 2009

Formula

By Rosser's theorem, a(2n) > n log n. - Charles R Greathouse IV, Sep 11 2009