A128321 Column 0 of triangle A128320.
1, 1, 4, 17, 98, 622, 4512, 35373, 300974, 2722070, 26118056, 263266346, 2780054884, 30586452652, 349724463584, 4141218303165, 50678688359190, 639387728054310, 8302396672724280, 110754894628585950
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..600
Crossrefs
Programs
-
Magma
I:=[1,1,4]; [n le 3 select I[n] else (-(n-2)*(n-3)*Self(n-1) + 4*(3*(n-2)^2+n-3)*Self(n-2) + 8*(n-3)^2*(n-1)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Jun 25 2024
-
Mathematica
a[n_]:= a[n]= If[n<3, (n!)^2, (-(n-1)*(n-2)*a[n-1] +4*(3*n^2-5*n +1)*a[n-2] + 8*(n-2)^2*n*a[n-3])/(n+1)]; Table[a[n], {n,0,40}] (* G. C. Greubel, Jun 25 2024 *)
-
PARI
{a(n)=sum(k=0,n\2,binomial(2*n-2*k,n-k)/(n-k+1)*binomial(2*k,k)/(k+1) *(k+1)!*binomial(n,2*k))}
-
SageMath
@CachedFunction def a(n): # a = A128321 if n<3: return (1,1,4)[n] else: return (-(n-1)*(n-2)*a(n-1) + 4*(3*n^2-5*n+1)*a(n-2) + 8*(n-2)^2*n*a(n-3))/(n+1) [a(n) for n in range(31)] # G. C. Greubel, Jun 25 2024
Formula
a(n) = Sum_{k=0..floor((n+1)/2)} ((k+1)!*C(2*(n-k), n-k)*C(2*k, k)*C(n, 2*k))/((k+1)*(n-k+1)).
a(n) = ( -(n-1)*(n-2)*a(n-1) + 4*(3*n^2 -5*n +1)*a(n-2) + 8*n*(n-2)^2* a(n-3) )/(n+1), with a(0) = 1, a(1) = 1, a(2) = 4. - G. C. Greubel, Jun 25 2024
a(n) ~ 2^(3*n/2 + 1) * exp(sqrt(2*n) - n/2 - 1/2) * n^((n-3)/2) / sqrt(Pi) * (1 - 7/(3*sqrt(2*n))). - Vaclav Kotesovec, Jun 25 2024