cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A128321 Column 0 of triangle A128320.

Original entry on oeis.org

1, 1, 4, 17, 98, 622, 4512, 35373, 300974, 2722070, 26118056, 263266346, 2780054884, 30586452652, 349724463584, 4141218303165, 50678688359190, 639387728054310, 8302396672724280, 110754894628585950
Offset: 0

Views

Author

Paul D. Hanna, Feb 25 2007

Keywords

Crossrefs

Cf. A128320 (triangle), A128322 (column 1), A128323 (column 2), A128324 (row sums); variant: A115081.
Cf. A000108 (Catalan numbers).

Programs

  • Magma
    I:=[1,1,4]; [n le 3 select I[n] else (-(n-2)*(n-3)*Self(n-1) + 4*(3*(n-2)^2+n-3)*Self(n-2) + 8*(n-3)^2*(n-1)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    a[n_]:= a[n]= If[n<3, (n!)^2, (-(n-1)*(n-2)*a[n-1] +4*(3*n^2-5*n +1)*a[n-2] + 8*(n-2)^2*n*a[n-3])/(n+1)];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Jun 25 2024 *)
  • PARI
    {a(n)=sum(k=0,n\2,binomial(2*n-2*k,n-k)/(n-k+1)*binomial(2*k,k)/(k+1) *(k+1)!*binomial(n,2*k))}
    
  • SageMath
    @CachedFunction
    def a(n): # a = A128321
        if n<3: return (1,1,4)[n]
        else: return (-(n-1)*(n-2)*a(n-1) + 4*(3*n^2-5*n+1)*a(n-2) + 8*(n-2)^2*n*a(n-3))/(n+1)
    [a(n) for n in range(31)] # G. C. Greubel, Jun 25 2024

Formula

a(n) = Sum_{k=0..floor(n/2)} A000108(n-k)*A000108(k)*(k+1)!*C(n,2*k).
a(n) = Sum_{k=0..floor((n+1)/2)} ((k+1)!*C(2*(n-k), n-k)*C(2*k, k)*C(n, 2*k))/((k+1)*(n-k+1)).
a(n) = ( -(n-1)*(n-2)*a(n-1) + 4*(3*n^2 -5*n +1)*a(n-2) + 8*n*(n-2)^2* a(n-3) )/(n+1), with a(0) = 1, a(1) = 1, a(2) = 4. - G. C. Greubel, Jun 25 2024
a(n) ~ 2^(3*n/2 + 1) * exp(sqrt(2*n) - n/2 - 1/2) * n^((n-3)/2) / sqrt(Pi) * (1 - 7/(3*sqrt(2*n))). - Vaclav Kotesovec, Jun 25 2024

A128322 Column 1 of triangle A128320; a(n) = A128321(n) + 2n*A128321(n-1), where A128321 is column 0 of triangle A128320.

Original entry on oeis.org

1, 3, 8, 41, 234, 1602, 11976, 98541, 866942, 8139602, 80559456, 837863578, 9098447188, 102867879636, 1206145137840, 14632952210685, 183197674060470, 2362463132266770, 31320354882679440, 426245968192108590
Offset: 0

Views

Author

Paul D. Hanna, Feb 25 2007

Keywords

Crossrefs

Cf. A128320 (triangle), A128321 (column 0), A128323 (column 2), A128324 (row sums); variant: A115082.

Programs

  • PARI
    {a(n)=sum(k=0,(n+1)\2,binomial(2*n-2*k,n-k)/(n-k+1)*binomial(2*k,k)/(k+1) *(k+1)!*binomial(n+1,2*k))}
    for(n=0,25, print1(a(n),", "))

Formula

a(n) = Sum_{k=0..[(n+1)/2]} A000108(n-k)*A000108(k)*(k+1)!*C(n+1,2k) where A000108 is the Catalan numbers.
a(n) = Sum_{k=0..[(n+1)/2]} C(2(n-k),n-k)/(n-k+1)*C(2k,k)/(k+1)*(k+1)!*C(n+1,2k).

A128323 Column 2 of triangle A128320.

Original entry on oeis.org

1, 5, 12, 73, 418, 3110, 23920, 207549, 1885166, 18417710, 187881112, 2018628090, 22533601892, 261966343388, 3149344100224, 39158513865053, 501507474201750, 6611648592425790, 89492095211184360, 1242626064512513070
Offset: 0

Views

Author

Paul D. Hanna, Feb 25 2007

Keywords

Crossrefs

Cf. A128320 (triangle), A128321 (column 0), A128322 (column 1), A128324 (row sums); variant: A115083.

Programs

  • PARI
    
    				

A128324 Row sums of triangle A128320.

Original entry on oeis.org

1, 2, 8, 31, 159, 955, 6677, 51308, 429868, 3847548, 36599474, 366515450, 3848812068, 42154442638, 480103999452, 5666303543327, 69139729751267, 870092119451903, 11272494698299169, 150074841511853609
Offset: 0

Views

Author

Paul D. Hanna, Feb 25 2007

Keywords

Crossrefs

Cf. A128320 (triangle), A128321 (column 0), A128322 (column 1), A128323 (column 2); variant: A115084.

Programs

  • PARI
    
    				
Showing 1-4 of 4 results.