A128320 Triangle, read by rows, where T(n,k) equals the dot product of the vector of terms in row n that are to the right of T(n,k) with the vector of terms in column k that are above T(n,k) for n>k+1>0, with the odd numbers in the secondary diagonal and all 1's in the main diagonal.
1, 1, 1, 4, 3, 1, 17, 8, 5, 1, 98, 41, 12, 7, 1, 622, 234, 73, 16, 9, 1, 4512, 1602, 418, 113, 20, 11, 1, 35373, 11976, 3110, 650, 161, 24, 13, 1, 300974, 98541, 23920, 5242, 930, 217, 28, 15, 1, 2722070, 866942, 207549, 41304, 8094, 1258, 281, 32, 17, 1
Offset: 0
Examples
Illustrate the recurrence by: T(n,k) = [T(n,k+1),T(n,k+2), ..,T(n,n)]*[T(k,k),T(k+1,k),..,T(n-1,k)]: T(3,0) = [8,5,1]*[1,1,4]~ = 8*1 + 5*1 + 1*4 = 17; T(4,1) = [12,7,1]*[1,3,8]~ = 12*1 + 7*3 + 1*8 = 41; T(5,1) = [73,16,9,1]*[1,3,8,41]~ = 73*1 + 16*3 + 9*8 + 1*41 = 234; T(6,2) = [113,20,11,1]*[1,5,12,73]~ = 113*1 + 20*5 + 11*12 + 1*73 = 418. Triangle begins: 1; 1, 1; 4, 3, 1; 17, 8, 5, 1; 98, 41, 12, 7, 1; 622, 234, 73, 16, 9, 1; 4512, 1602, 418, 113, 20, 11, 1; 35373, 11976, 3110, 650, 161, 24, 13, 1; 300974, 98541, 23920, 5242, 930, 217, 28, 15, 1; 2722070, 866942, 207549, 41304, 8094, 1258, 281, 32, 17, 1; 26118056, 8139602, 1885166, 377757, 65088, 11762, 1634, 353, 36, 19, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
function T(n,k) // T = A128320 if k eq n then return 1; elif k eq n-1 then return 2*n-1; else return (&+[T(n, k+j+1)*T(k+j, k): j in [0..n-k-1]]); end if; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 25 2024
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==n, 1, If[k==n-1, 2*n-1, Sum[T[n,k+j+1] *T[k+j,k], {j,0,n-k-1}]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 25 2024 *)
-
PARI
{T(n,k)=if(n==k,1, if(n==k+1,2*n-1, sum(i=0,n-k-1, T(n,k+i+1)*T(k+i,k))))}; for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
-
SageMath
@CachedFunction def T(n,k): # T = A128320 if k==n: return 1 elif k==n-1: return 2*n-1 else: return sum(T(n, k+j+1)*T(k+j, k) for j in range(n-k)) flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 25 2024
Formula
T(n,k) = Sum_{j=0..n-1-k} T(n,k+j+1)*T(k+j,k) for n > k+1 > 0, with T(n,n) = 1 and T(n, n-1) = 2*n-1 for k >= 0.