cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A128320 Triangle, read by rows, where T(n,k) equals the dot product of the vector of terms in row n that are to the right of T(n,k) with the vector of terms in column k that are above T(n,k) for n>k+1>0, with the odd numbers in the secondary diagonal and all 1's in the main diagonal.

Original entry on oeis.org

1, 1, 1, 4, 3, 1, 17, 8, 5, 1, 98, 41, 12, 7, 1, 622, 234, 73, 16, 9, 1, 4512, 1602, 418, 113, 20, 11, 1, 35373, 11976, 3110, 650, 161, 24, 13, 1, 300974, 98541, 23920, 5242, 930, 217, 28, 15, 1, 2722070, 866942, 207549, 41304, 8094, 1258, 281, 32, 17, 1
Offset: 0

Views

Author

Paul D. Hanna, Feb 25 2007

Keywords

Examples

			Illustrate the recurrence by:
  T(n,k) = [T(n,k+1),T(n,k+2), ..,T(n,n)]*[T(k,k),T(k+1,k),..,T(n-1,k)]:
  T(3,0) = [8,5,1]*[1,1,4]~ = 8*1 + 5*1 + 1*4 = 17;
  T(4,1) = [12,7,1]*[1,3,8]~ = 12*1 + 7*3 + 1*8 = 41;
  T(5,1) = [73,16,9,1]*[1,3,8,41]~ = 73*1 + 16*3 + 9*8 + 1*41 = 234;
  T(6,2) = [113,20,11,1]*[1,5,12,73]~ = 113*1 + 20*5 + 11*12 + 1*73 = 418.
Triangle begins:
         1;
         1,       1;
         4,       3,       1;
        17,       8,       5,      1;
        98,      41,      12,      7,     1;
       622,     234,      73,     16,     9,     1;
      4512,    1602,     418,    113,    20,    11,    1;
     35373,   11976,    3110,    650,   161,    24,   13,   1;
    300974,   98541,   23920,   5242,   930,   217,   28,  15,  1;
   2722070,  866942,  207549,  41304,  8094,  1258,  281,  32, 17,  1;
  26118056, 8139602, 1885166, 377757, 65088, 11762, 1634, 353, 36, 19, 1;
		

Crossrefs

Columns k: A128321 (k=0), A128322 (k=1), A128323 (k=2).
Sums: A128324 (row sums).
Variant of: A115080.

Programs

  • Magma
    function T(n,k) // T = A128320
       if k eq n then return 1;
       elif k eq n-1 then return 2*n-1;
       else return (&+[T(n, k+j+1)*T(k+j, k): j in [0..n-k-1]]);
       end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==n, 1, If[k==n-1, 2*n-1, Sum[T[n,k+j+1] *T[k+j,k], {j,0,n-k-1}]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 25 2024 *)
  • PARI
    {T(n,k)=if(n==k,1, if(n==k+1,2*n-1, sum(i=0,n-k-1, T(n,k+i+1)*T(k+i,k))))};
    for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
    
  • SageMath
    @CachedFunction
    def T(n,k): # T = A128320
        if k==n: return 1
        elif k==n-1: return 2*n-1
        else: return sum(T(n, k+j+1)*T(k+j, k) for j in range(n-k))
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 25 2024

Formula

T(n,k) = Sum_{j=0..n-1-k} T(n,k+j+1)*T(k+j,k) for n > k+1 > 0, with T(n,n) = 1 and T(n, n-1) = 2*n-1 for k >= 0.

A128321 Column 0 of triangle A128320.

Original entry on oeis.org

1, 1, 4, 17, 98, 622, 4512, 35373, 300974, 2722070, 26118056, 263266346, 2780054884, 30586452652, 349724463584, 4141218303165, 50678688359190, 639387728054310, 8302396672724280, 110754894628585950
Offset: 0

Views

Author

Paul D. Hanna, Feb 25 2007

Keywords

Crossrefs

Cf. A128320 (triangle), A128322 (column 1), A128323 (column 2), A128324 (row sums); variant: A115081.
Cf. A000108 (Catalan numbers).

Programs

  • Magma
    I:=[1,1,4]; [n le 3 select I[n] else (-(n-2)*(n-3)*Self(n-1) + 4*(3*(n-2)^2+n-3)*Self(n-2) + 8*(n-3)^2*(n-1)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    a[n_]:= a[n]= If[n<3, (n!)^2, (-(n-1)*(n-2)*a[n-1] +4*(3*n^2-5*n +1)*a[n-2] + 8*(n-2)^2*n*a[n-3])/(n+1)];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Jun 25 2024 *)
  • PARI
    {a(n)=sum(k=0,n\2,binomial(2*n-2*k,n-k)/(n-k+1)*binomial(2*k,k)/(k+1) *(k+1)!*binomial(n,2*k))}
    
  • SageMath
    @CachedFunction
    def a(n): # a = A128321
        if n<3: return (1,1,4)[n]
        else: return (-(n-1)*(n-2)*a(n-1) + 4*(3*n^2-5*n+1)*a(n-2) + 8*(n-2)^2*n*a(n-3))/(n+1)
    [a(n) for n in range(31)] # G. C. Greubel, Jun 25 2024

Formula

a(n) = Sum_{k=0..floor(n/2)} A000108(n-k)*A000108(k)*(k+1)!*C(n,2*k).
a(n) = Sum_{k=0..floor((n+1)/2)} ((k+1)!*C(2*(n-k), n-k)*C(2*k, k)*C(n, 2*k))/((k+1)*(n-k+1)).
a(n) = ( -(n-1)*(n-2)*a(n-1) + 4*(3*n^2 -5*n +1)*a(n-2) + 8*n*(n-2)^2* a(n-3) )/(n+1), with a(0) = 1, a(1) = 1, a(2) = 4. - G. C. Greubel, Jun 25 2024
a(n) ~ 2^(3*n/2 + 1) * exp(sqrt(2*n) - n/2 - 1/2) * n^((n-3)/2) / sqrt(Pi) * (1 - 7/(3*sqrt(2*n))). - Vaclav Kotesovec, Jun 25 2024

A128323 Column 2 of triangle A128320.

Original entry on oeis.org

1, 5, 12, 73, 418, 3110, 23920, 207549, 1885166, 18417710, 187881112, 2018628090, 22533601892, 261966343388, 3149344100224, 39158513865053, 501507474201750, 6611648592425790, 89492095211184360, 1242626064512513070
Offset: 0

Views

Author

Paul D. Hanna, Feb 25 2007

Keywords

Crossrefs

Cf. A128320 (triangle), A128321 (column 0), A128322 (column 1), A128324 (row sums); variant: A115083.

Programs

  • PARI
    
    				

A128324 Row sums of triangle A128320.

Original entry on oeis.org

1, 2, 8, 31, 159, 955, 6677, 51308, 429868, 3847548, 36599474, 366515450, 3848812068, 42154442638, 480103999452, 5666303543327, 69139729751267, 870092119451903, 11272494698299169, 150074841511853609
Offset: 0

Views

Author

Paul D. Hanna, Feb 25 2007

Keywords

Crossrefs

Cf. A128320 (triangle), A128321 (column 0), A128322 (column 1), A128323 (column 2); variant: A115084.

Programs

  • PARI
    
    				
Showing 1-4 of 4 results.