cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128325 Rectangular table, read by antidiagonals, where the g.f.s of row n, R(x,n), satisfy: R(x,n+1) = R(G(x),n) for n>=0 and x*R(x,0) = G(x) = x + x*G(G(x)) is the g.f. of A030266.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 12, 23, 1, 1, 5, 20, 57, 104, 1, 1, 6, 30, 114, 305, 531, 1, 1, 7, 42, 200, 712, 1787, 2982, 1, 1, 8, 56, 321, 1435, 4772, 11269, 18109, 1, 1, 9, 72, 483, 2608, 10900, 33896, 75629, 117545, 1, 1, 10, 90, 692, 4389, 22219, 86799
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2007

Keywords

Comments

Row n equals 1 + (n+2)-th self-composition of the g.f. G(x) of A030266: R(x,0) = 1 + G(G(x)); R(x,1) = 1 + G(G(G(x))); R(x,2) = 1 + G(G(G(G(x)))); etc.

Examples

			Consider the infinite system of simultaneous equations:
  A = 1 + x*A*B;
  B = 1 + x*A*B*C;
  C = 1 + x*A*B*C*D;
  D = 1 + x*A*B*C*D*E;
  E = 1 + x*A*B*C*D*E*F; ...
The unique solution to the variables are:
  A = R(x,0), B = R(x,1), C = R(x,2), D = R(x,3), E = R(x,4), etc.,
where R(x,n) denotes the g.f. of row n of this table and satisfies:
  R(x,1) = R(x*A,0); R(x,2) = R(x*A,1); R(x,3) = R(x*A,2); etc.
The row g.f.s are also related by:
  R(x,0) = 1 + x/(1 - x*R(x,1) - x*R(x,2));
  R(x,1) = 1 + x/(1 - x*R(x,1) - x*R(x,2) - x*R(x,3));
  R(x,2) = 1 + x/(1 - x*R(x,1) - x*R(x,2) - x*R(x,3) - x*R(x,4)); etc.
The initial rows of this table begin:
  R(x,0): [1, 1,  2,   6,   23,   104,    531,    2982,    18109, ...];
  R(x,1): [1, 1,  3,  12,   57,   305,   1787,   11269,    75629, ...];
  R(x,2): [1, 1,  4,  20,  114,   712,   4772,   33896,   253102, ...];
  R(x,3): [1, 1,  5,  30,  200,  1435,  10900,   86799,   720074, ...];
  R(x,4): [1, 1,  6,  42,  321,  2608,  22219,  196910,  1805899, ...];
  R(x,5): [1, 1,  7,  56,  483,  4389,  41531,  406441,  4095749, ...];
  R(x,6): [1, 1,  8,  72,  692,  6960,  72512,  777888,  8559852, ...];
  R(x,7): [1, 1,  9,  90,  954, 10527, 119832, 1399755, 16720998, ...];
  R(x,8): [1, 1, 10, 110, 1275, 15320, 189275, 2392998, 30865353, ...];
  R(x,9): [1, 1, 11, 132, 1661, 21593, 287859, 3918189, 54301621, ...];
  R(x,10):[1, 1, 12, 156, 2118, 29624, 423956, 6183400, 91673594, ...]; ...
		

Crossrefs

Cf. A030266 (row 0), A128326 (row 1), A128327 (row 2), A128328 (row 3), A128329 (main diagonal); A128330 (variant).

Programs

  • PARI
    {T(n,k)=local(A=vector(n+k+3,m,1+x+x*O(x^(n+k)))); for(i=1,n+k+3,for(j=1,n+k+1,N=n+k+2-j; A[N]=1+x/(1-x*sum(m=2,N+2,A[m]+x*O(x^(n+k))))));Vec(A[n+1])[k+1]}

Formula

Let R(x,n) denote the g.f. of row n of this table, then
R(x,n) = 1 + x*Product_{k=0..n+1} R(x,k),
R(x,n) = 1 + x/[1 - x*Sum_{k=1..n+2} R(x,k) ].