cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128434 Triangle, read by rows, T(n,k) = denominator of the maximum of the k-th Bernstein polynomial of degree n; numerator is A128433.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 9, 9, 1, 1, 64, 8, 64, 1, 1, 625, 625, 625, 625, 1, 1, 7776, 243, 16, 243, 7776, 1, 1, 117649, 117649, 117649, 117649, 117649, 117649, 1, 1, 2097152, 16384, 2097152, 128, 2097152, 16384, 2097152, 1, 1, 43046721, 43046721, 6561, 43046721, 43046721, 6561, 43046721, 43046721, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 03 2007

Keywords

Examples

			Triangle begins as:
  1;
  1,       1;
  1,       2,      1;
  1,       9,      9,       1;
  1,      64,      8,      64,      1;
  1,     625,    625,     625,    625,       1;
  1,    7776     243,      16,    243,    7776,      1;
  1,  117649, 117649,  117649, 117649,  117649, 117649,       1;
  1, 2097152,  16384, 2097152,    128, 2097152,  16384, 2097152, 1;
		

Crossrefs

Programs

  • Mathematica
    B[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k]*k^k*(n-k)^(n-k)/n^n];
    T[n_, k_]= Denominator[B[n, k]];
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 19 2021 *)
  • Sage
    def B(n,k): return 1 if (k==0 or k==n) else binomial(n, k)*k^k*(n-k)^(n-k)/n^n
    def T(n,k): return denominator(B(n,k))
    flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jul 19 2021

Formula

A128433(n,k)/T(n,k) = binomial(n,k) * k^k * (n-k)^(n-k) / n^n.
For n>0: Sum_{k=0..n} A128433(n,k)/T(n,k) = A090878(n)/A036505(n-1);
T(n, n-k) = T(n,k).
T(n, 0) = T(n, n) = 1.
for n>0: A128433(n,1)/T(n,1) = A000312(n-1)/A000169(n).