A128434 Triangle, read by rows, T(n,k) = denominator of the maximum of the k-th Bernstein polynomial of degree n; numerator is A128433.
1, 1, 1, 1, 2, 1, 1, 9, 9, 1, 1, 64, 8, 64, 1, 1, 625, 625, 625, 625, 1, 1, 7776, 243, 16, 243, 7776, 1, 1, 117649, 117649, 117649, 117649, 117649, 117649, 1, 1, 2097152, 16384, 2097152, 128, 2097152, 16384, 2097152, 1, 1, 43046721, 43046721, 6561, 43046721, 43046721, 6561, 43046721, 43046721, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 2, 1; 1, 9, 9, 1; 1, 64, 8, 64, 1; 1, 625, 625, 625, 625, 1; 1, 7776 243, 16, 243, 7776, 1; 1, 117649, 117649, 117649, 117649, 117649, 117649, 1; 1, 2097152, 16384, 2097152, 128, 2097152, 16384, 2097152, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Eric Weisstein's World of Mathematics, Bernstein Polynomial
Programs
-
Mathematica
B[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k]*k^k*(n-k)^(n-k)/n^n]; T[n_, k_]= Denominator[B[n, k]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 19 2021 *)
-
Sage
def B(n,k): return 1 if (k==0 or k==n) else binomial(n, k)*k^k*(n-k)^(n-k)/n^n def T(n,k): return denominator(B(n,k)) flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jul 19 2021