A128464 Numbers that are congruent to {11, 17, 29} mod 30.
11, 17, 29, 41, 47, 59, 71, 77, 89, 101, 107, 119, 131, 137, 149, 161, 167, 179, 191, 197, 209, 221, 227, 239, 251, 257, 269, 281, 287, 299, 311, 317, 329, 341, 347, 359, 371, 377, 389, 401, 407, 419, 431, 437, 449, 461, 467, 479, 491, 497, 509, 521, 527, 539
Offset: 1
Examples
41 = 30*1 + 11, the lower part of the twin prime pair 41,43.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..800] | n mod 30 in [11, 17, 29]]; // Wesley Ivan Hurt, Jun 14 2016
-
Maple
A128464:=n->10*n-1+4*sin(2*n*Pi/3)/sqrt(3): seq(A128464(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
-
Mathematica
Select[Range[0, 800], MemberQ[{11, 17, 29}, Mod[#, 30]] &] (* Wesley Ivan Hurt, Jun 14 2016 *) LinearRecurrence[{1, 0, 1, -1}, {11, 17, 29, 41}, 100] (* Vincenzo Librandi, Jun 15 2016 *)
-
PARI
g(n) = forstep(x=11,n,30,print1(x","x+6","x+18","))
Formula
From Wesley Ivan Hurt, Jun 14 2016: (Start)
G.f.: x*(11+6*x+12*x^2+x^3)/((x-1)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 10*n-1+4*sin(2*n*Pi/3)/sqrt(3).
a(3k) = 30k-1, a(3k-1) = 30k-13, a(3k-2) = 30k-19. (End)
E.g.f.: 1 + (10*x - 1)*exp(x) + 4*sin(sqrt(3)*x/2)*(cosh(x/2) - sinh(x/2))/sqrt(3). - Ilya Gutkovskiy, Jun 15 2016
Extensions
Better name by Omar E. Pol, Oct 28 2013
Comments