A128468 a(n) = 30*n + 17.
17, 47, 77, 107, 137, 167, 197, 227, 257, 287, 317, 347, 377, 407, 437, 467, 497, 527, 557, 587, 617, 647, 677, 707, 737, 767, 797, 827, 857, 887, 917, 947, 977, 1007, 1037, 1067, 1097, 1127, 1157, 1187, 1217, 1247, 1277, 1307, 1337, 1367, 1397, 1427, 1457
Offset: 0
Examples
17 = 30*0 + 17, the lower part of the twin prime pair 17,19.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1999
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Cf. A001359.
Programs
-
Maple
seq(30*n+17, n=0..100); # Robert Israel, Dec 10 2014
-
Mathematica
Range[17, 7000, 30] (* Vladimir Joseph Stephan Orlovsky, Jul 13 2011 *)
-
PARI
g(n) = forstep(x=17,n,30,print1(x","))
Formula
From Robert Israel, Dec 10 2014: (Start)
G.f.: x*(13*x+17)/(x-1)^2.
E.g.f.: 13 + (30*x-13)*exp(x). (End)
a(n) = 2*a(n-1) - a(n-2) for n >= 2. - Jinyuan Wang, Mar 10 2020
Extensions
Offset changed to 0, new name from Joerg Arndt, Dec 11 2014
Comments