A128470 a(n) = 30*n + 1.
1, 31, 61, 91, 121, 151, 181, 211, 241, 271, 301, 331, 361, 391, 421, 451, 481, 511, 541, 571, 601, 631, 661, 691, 721, 751, 781, 811, 841, 871, 901, 931, 961, 991, 1021, 1051, 1081, 1111, 1141, 1171, 1201, 1231, 1261, 1291, 1321, 1351, 1381, 1411, 1441, 1471
Offset: 0
Examples
61 = 30 * 2 + 1, the upper part of the twin prime pair 59, 61.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Albert van der Horst, Counting Twin Primes
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Magma
[30*n+1: n in [0..50]]; // Vincenzo Librandi, Jun 16 2011
-
Mathematica
Range[1, 3001, 30] (* Vladimir Joseph Stephan Orlovsky, Jun 15 2011 *) CoefficientList[Series[(1 + 29 x) / (1 - x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 30 2014 *) LinearRecurrence[{2, -1}, {1, 31}, 100] (* G. C. Greubel, Apr 04 2016 *)
-
PARI
a(n)=30*n+1 \\ Charles R Greathouse IV, Oct 07 2015
-
Scala
(0 to 49).map(30 * + 1) // _Alonso del Arte, Jun 02 2019
Formula
a(n) = 2*a(n-1) - a(n-2) for n > 1. - Vincenzo Librandi, Dec 30 2014
G.f.: (1 + 29*x)/(1 - x)^2. - Vincenzo Librandi, Dec 30 2014
E.g.f.: (1 + 30*x)*exp(x). - G. C. Greubel, Apr 04 2016
Comments