A128473 Numbers of the form 30*k+23 or numbers that cannot be part of a twin prime pair.
23, 53, 83, 113, 143, 173, 203, 233, 263, 293, 323, 353, 383, 413, 443, 473, 503, 533, 563, 593, 623, 653, 683, 713, 743, 773, 803, 833, 863, 893, 923, 953, 983, 1013, 1043, 1073, 1103, 1133, 1163, 1193, 1223, 1253, 1283, 1313, 1343, 1373, 1403, 1433, 1463
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Albert van der Horst, Counting Twin Primes
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Subsequence of A110673.
Programs
-
Magma
[30*n+23: n in [0..50]]; // Vincenzo Librandi, Feb 15 2018
-
Magma
I:=[23,53,83]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 15 2018
-
Mathematica
Range[23, 7000, 30] (* Vladimir Joseph Stephan Orlovsky, Jul 13 2011 *) CoefficientList[Series[(23 + 7 x) / (1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, Feb 15 2018 *) LinearRecurrence[{3,-3,1},{23,53,83},50] (* or *) NestList[#+30&,23,50] (* Harvey P. Dale, Sep 11 2019 *)
-
PARI
g(n) = forstep(x=23,n,30,print1(x","))
Formula
From Vincenzo Librandi, Feb 15 2018: (Start)
G.f.: x*(23 + 7*x)/(1 - x)^2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
Comments