A101950
Product of A049310 and A007318 as lower triangular matrices.
Original entry on oeis.org
1, 1, 1, 0, 2, 1, -1, 1, 3, 1, -1, -2, 3, 4, 1, 0, -4, -2, 6, 5, 1, 1, -2, -9, 0, 10, 6, 1, 1, 3, -9, -15, 5, 15, 7, 1, 0, 6, 3, -24, -20, 14, 21, 8, 1, -1, 3, 18, -6, -49, -21, 28, 28, 9, 1, -1, -4, 18, 36, -35, -84, -14, 48, 36, 10, 1, 0, -8, -4, 60, 50, -98, -126, 6, 75, 45, 11, 1, 1, -4, -30, 20, 145, 36, -210
Offset: 0
Triangle begins:
1,
1, 1,
0, 2, 1,
-1, 1, 3, 1,
-1,-2, 3, 4, 1,
...
Triangle [0,1,-1,1,0,0,0,0,...] DELTA [1,0,0,0,0,0,...] begins : 1 ; 0,1 ; 0,1,1 ; 0,0,2,1 ; 0,-1,1,3,1 ; 0,-1,-2,3,4,1 ; ... - _Philippe Deléham_, Jan 27 2010
- Vincenzo Librandi, Table of n, a(n) for n = 0..1325
- Jerry Ray Dias, Properties and relationships of conjugated polyenes having a reciprocal eigenvalue spectrum - dendralene and radialene hydrocarbons, Croatica Chem. Acta, 77 (2004), 325-330. [p. 328].
- Jonathan L. Gross, Toufik Mansour, Thomas W. Tucker, and David G. L. Wang, Root geometry of polynomial sequences. II: Type (1,0), J. Math. Anal. Appl. 441, No. 2, 499-528 (2016).
-
A101950 := proc(n,k) local j,k1: add((-1)^((n-j)/2)*binomial((n+j)/2,j)*(1+(-1)^(n+j))* binomial(j,k)/2, j=0..n) end: seq(seq(A101950(n,k),k=0..n), n=0..11); # Johannes W. Meijer, Aug 06 2011
# Uses function PMatrix from A357368. Adds a row on top and a column to the left.
PMatrix(10, n -> [0, 1, 1, 0, -1,-1][irem(n, 6) + 1]); # Peter Luschny, Oct 08 2022
-
T[0, 0] = 1; T[n_, k_] /; k>n || k<0 = 0; T[n_, k_] := T[n, k] = T[n-1, k-1]+T[n-1, k]-T[n-2, k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 07 2014, after Philippe Deléham *)
A128503
Array for second (k=2) convolution of Chebyshev's S(n,x)=U(n,x/2) polynomials.
Original entry on oeis.org
1, 3, 6, -3, 10, -12, 15, -30, 6, 21, -60, 30, 28, -105, 90, -10, 36, -168, 210, -60, 45, -252, 420, -210, 15, 55, -360, 756, -560, 105, 66, -495, 1260, -1260, 420, -21, 78, -660, 1980, -2520, 1260, -168, 91, -858, 2970, -4620, 3150, -756, 28, 105, -1092, 4290, -7920, 6930, -2520, 252, 120, -1365
Offset: 0
n=4: [15,-30,6] stands for the polynomial S2(4,x) = 15*x^4-30*x^2+6 = 2*(S(4,x)*S1(0,x)+S(3,x)*S1(1,x))+S(2,x)*S1(2,x).
n=4:[15,-30,6] stands also for the row polynomial P2(4,x) = 15-30*x+6*x^2.
[1];[3];[6,-3];[10,-12];[15,-30,6];[21,-60,30];[28,-105,90,-10];...
Original entry on oeis.org
0, 0, 0, 0, 4, 26, 120, 455, 1456, 4122, 10608, 25194, 55980, 117572, 235144, 450681, 832048, 1485800, 2575368, 4345965, 7158060, 11532402, 18209100, 28224105, 43008120, 64512240, 95365920, 139075245, 200268432, 284997384, 401107356
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Pieter Moree, The formal series Witt transform, Discr. Math. no. 295 vol. 1-3 (2005) 143-160.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,60,-102,168,-258,336,-393,452,-484,452,-393, 336,-258,168,-102,60,-28,8,-1).
-
R:=PowerSeriesRing(Integers(), 40); [0,0,0,0] cat Coefficients(R!( x^4*(2-x+2*x^2)*(2-2*x+9*x^2-2*x^3+2*x^4)/((1-x)^12*(1+x+x^2)^4) )); // G. C. Greubel, Oct 24 2022
-
CoefficientList[Series[x^4(2*x^2 - x + 2)(2*x^4 - 2*x^3 + 9*x^2 - 2*x+2)/((1-x)^12 * (1 + x + x^2)^4), {x, 0, 40}], x] (* Vincenzo Librandi Dec 13 2012 *)
-
def A147621_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^4*(2-x+2*x^2)*(2-2*x+9*x^2-2*x^3+2*x^4)/((1-x)^12*(1+x+x^2)^4) ).list()
A147621_list(40) # G. C. Greubel, Oct 24 2022
Original entry on oeis.org
0, 0, 0, 0, 3, 15, 54, 165, 429, 999, 2145, 4290, 8100, 14586, 25194, 41985, 67830, 106590, 163431, 245157, 360525, 520749, 740025, 1036035, 1430703, 1950975, 2629575, 3506085, 4628052, 6052068, 7845255, 10086780, 12869340, 16301142
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Pieter Moree, The formal series Witt transform, Discr. Math. no. 295 vol. 1-3 (2005) 143-160.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,23,-33,51,-64,63,-63,64,-51,33,-23,15,-6,1).
-
R:=PowerSeriesRing(Integers(), 30); [0,0,0,0] cat Coefficients(R!( 3*x^4*(1-x+3*x^2-x^3+x^4)/((1-x)^9*(1+x+x^2)^3) )); // G. C. Greubel, Oct 24 2022
-
CoefficientList[Series[3*x^4*(1-x+3*x^2-x^3+x^4)/((1-x)^9*(1+x+x^2)^3), {x,0,40}], x] (* Vincenzo Librandi, Dec 13 2012 *)
-
def A147618_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 3*x^4*(1-x+3*x^2-x^3+x^4)/((1-x)^9*(1+x+x^2)^3) ).list()
A147618_list(30) # G. C. Greubel, Oct 24 2022
A144701
Hankel transform of expansion of 1/c(x)^3, c(x) the g.f. of A000108.
Original entry on oeis.org
1, -9, 26, -25, -36, 133, -132, -81, 375, -374, -144, 806, -805, -225, 1480, -1479, -324, 2451, -2450, -441, 3773, -3772, -576, 5500, -5499, -729, 7686, -7685, -900, 10385, -10384, -1089, 13651, -13650, -1296, 17538, -17537
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-4,-10,-16,-19,-16,-10,-4,-1).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x^2)*(1-5*x+x^2)/(1+x+x^2)^4 )); // G. C. Greubel, Jun 16 2022
-
LinearRecurrence[{-4,-10,-16,-19,-16,-10,-4,-1}, {1,-9,26,-25,-36,133,-132,-81}, 40] (* G. C. Greubel, Jun 16 2022 *)
-
def A144701_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x^2)*(1-5*x+x^2)/(1+x+x^2)^4 ).list()
A144701_list(40) # G. C. Greubel, Jun 16 2022
A238988
Triangle T(n,k), read by rows, given by (1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, -1, 0, 2, 1, -1, -1, 1, 2, 1, 0, -1, -2, 1, 3, 1, 1, 0, -4, -2, 3, 3, 1, 1, 1, -2, -4, -2, 3, 4, 1, 0, 1, 3, -2, -9, -2, 6, 4, 1, -1, 0, 6, 3, -9, -9, 0, 6, 5, 1, -1, -1, 3, 6, 3, -9, -15, 0, 10, 5, 1, 0, -1, -4, 3, 18, 3, -24, -15, 5, 10, 6, 1
Offset: 0
Triangle begins:
1;
1, 1;
0, 1, 1;
-1, 0, 2, 1;
-1, -1, 1, 2, 1;
0, -1, -2, 1, 3, 1;
1, 0, -4, -2, 3, 3, 1;
1, 1, -2, -4, -2, 3, 4, 1;
0, 1, 3, -2, -9, -2, 6, 4, 1;
-1, 0, 6, 3, -9, -9, 0, 6, 5, 1;
-1, -1, 3, 6, 3, -9, -15, 0, 10, 5, 1;
0, -1, -4, 3, 18, 3, -24, -15, 5, 10, 6, 1;
1, 0, -8, -4, 18, 18, -6, -24, -20, 5, 15, 6, 1;
-
nmax=11; Flatten[CoefficientList[Series[CoefficientList[Series[(1 + x*y)/(1 - x + x^2 - x^2*y^2), {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 14 2017 *)
A281862
Riordan transform of the triangular number sequence A000217 with the Chebyshev S matrix A049310.
Original entry on oeis.org
0, 1, 3, 4, 1, -6, -11, -6, 9, 21, 14, -12, -34, -25, 15, 50, 39, -18, -69, -56, 21, 91, 76, -24, -116, -99, 27, 144, 125, -30, -175, -154, 33, 209, 186, -36, -246, -221, 39, 286, 259, -42, -329, -300, 45, 375
Offset: 0
-
CoefficientList[Series[x (1 + x^2)/(1 - x + x^2)^3, {x, 0, 45}], x] (* Michael De Vlieger, Feb 18 2017 *)
Showing 1-7 of 7 results.
Comments