cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A128504 Row sums of array A128503 (second convolution of Chebyshev's S(n,x) = U(n,x/2) polynomials).

Original entry on oeis.org

1, 3, 3, -2, -9, -9, 3, 18, 18, -4, -30, -30, 5, 45, 45, -6, -63, -63, 7, 84, 84, -8, -108, -108, 9, 135, 135, -10, -165, -165, 11, 198, 198, -12, -234, -234, 13, 273, 273, -14, -315, -315, 15, 360, 360, -16, -408, -408, 17, 459, 459
Offset: 0

Views

Author

Wolfdieter Lang Apr 04 2007

Keywords

Comments

Second convolution of A010892.
Convolution of A099254 with A010892.
a(n) equals the coefficient of x^2 of the characteristic polynomial of the (n+2)X(n+2) tridiagonal matrix with 1's along the main diagonal, the superdiagonal, and the subdiagonal (see Mathematica code below). [John M. Campbell, Jul 10 2011]

Crossrefs

Programs

  • Mathematica
    Table[Coefficient[CharacteristicPolynomial[Array[KroneckerDelta[#1, #2] + KroneckerDelta[#1, #2 - 1] + KroneckerDelta[#1, #2 + 1] &, {n + 2, n + 2}], x], x^2], {n, 0, 70}] (* John M. Campbell, Jul 10 2011 *)
  • PARI
    Vec(1/(1-x+x^2)^3+O(x^66)) \\ Joerg Arndt, Jul 02 2013

Formula

a(n) = Sum_{m=0..floor(n/2)} A128503(n,m).
G.f.: 1/(1-x+x^2)^3.
a(n) = (floor(n/3)+1)*(floor(n/3)-floor((n-1)/3)+(3/2)*(floor(n/3)+2)*(3*floor((n+1)/3)-n))*(-1)^n. - Tani Akinari, Jul 03 2013

A129533 Array read by antidiagonals: T(n,k) = binomial(n+1,2)*binomial(n+k,n+1) for 0 <= k <= n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 6, 12, 6, 0, 0, 10, 30, 30, 10, 0, 0, 15, 60, 90, 60, 15, 0, 0, 21, 105, 210, 210, 105, 21, 0, 0, 28, 168, 420, 560, 420, 168, 28, 0, 0, 36, 252, 756, 1260, 1260, 756, 252, 36, 0, 0, 45, 360, 1260, 2520, 3150, 2520, 1260, 360, 45, 0, 0, 55, 495
Offset: 0

Views

Author

Emeric Deutsch, Apr 22 2007

Keywords

Comments

Previous name was: Triangle read by rows: T(n,k)=derivative of the q-binomial coefficient [n,k] evaluated at q=1 (0<=k<=n). - N. J. A. Sloane, Jan 06 2016
For example, T(5,2)=30 because [5,2] = q^6 + q^5 + 2*q^4 + 2*q^3 + 2*q^2 + q + 1 with derivative 6q^5 + 5q^4 + 8q^3 + 6q^2 + 4q + 1, having value 30 at q=1. - Emeric Deutsch, Apr 22 2007
Sum of entries in n-th antidiagonal = n(n-1)2^(n-3) = A001788(n-1).
T(n,k) = A094305(n-2, k-1) for n >= 2, k >= 1.
T(n,k) is total number of pips on a set of generalized linear dominoes with n cells (rather than two) and with the number of pips in each cell running from 0 to k (rather than 6). T(2,6) = 168 gives the total number of pips on a standard set of dominoes. We regard a generalized linear domino with n cells and up to k pips per cell as an ordered n-tuple [i_1, i_2, ..., i_n] with 0 <= i_1 <= i_2 <= ... <= i_n <= k. - Alan Shore and N. J. A. Sloane, Jan 06 2016
T(n,k) can also be written more symmetrically as the trinomial coefficient (n+k; n-1, k-1, 2). - N. J. A. Sloane, Jan 06 2016
As a triangle read by rows, T(n,k) is the total number of inversions over all length n binary words having exactly k 1's. T(n,k) is also the total area above all North East lattice paths from the origin to the point (k,n-k). - Geoffrey Critzer, Mar 22 2018

Examples

			Array begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... (A000004)
0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, ... (A000217)
0, 3, 12, 30, 60, 105, 168, 252, 360, 495, 660, 858, ... (A027480)
0, 6, 30, 90, 210, 420, 756, 1260, 1980, 2970, 4290, ... (A033487)
0, 10, 60, 210, 560, 1260, 2520, 4620, 7920, 12870, ... (A266732)
0, 15, 105, 420, 1260, 3150, 6930, 13860, 25740, ... (A240440)
0, 21, 168, 756, 2520, 6930, 16632, 36036, ... (A266733)
...
If regarded as a triangle, this begins:
  0;
  0,  0;
  0,  1,  0;
  0,  3,  3,  0;
  0,  6, 12,  6,  0;
  0, 10, 30, 30, 10,  0;
  0, 15, 60, 90, 60, 15, 0;
  ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976.

Crossrefs

Cf. A001788.
A128503 and A094305 are very similar sequences.

Programs

  • Maple
    dd:=proc(n,m) if m=0 or n=0 then 0 else (m+n)!/(2*(m-1)!*(n-1)!); fi; end;
    f:=n->[seq(dd(n,m),m=0..30)];
    for n from 0 to 10 do lprint(f(n)); od: # produces sequence as square array
    T:=(n,k)->k*(k+1)*binomial(n,k+1)/2: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    Table[Table[D[Expand[FunctionExpand[QBinomial[n, k, q]]], q] /. q -> 1, {k, 0, n}], {n, 0, 15}] // Grid (* Geoffrey Critzer, Mar 22 2018 *)

Formula

T(n,k) = (1/2)*k*(k+1)*binomial(n,k+1).
G.f.: G(q,z) = qz^2/(1-z-qz)^3.

Extensions

Entry revised by N. J. A. Sloane, Jan 06 2016

A128505 Irregular triangular array a(n,m) for third (k=3) convolution of Chebyshev's S(n,x) = U(n,x/2) polynomials, read by rows (n >=0, 0 <= m <= floor(n/2)).

Original entry on oeis.org

1, 4, 10, -4, 20, -20, 35, -60, 10, 56, -140, 60, 84, -280, 210, -20, 120, -504, 560, -140, 165, -840, 1260, -560, 35, 220, -1320, 2520, -1680, 280, 286, -1980, 4620, -4200, 1260, -56, 364, -2860, 7920, -9240, 4200, -504, 455, -4004, 12870, -18480, 11550, -2520, 84, 560, -5460, 20020, -34320
Offset: 0

Views

Author

Wolfdieter Lang, Apr 04 2007

Keywords

Comments

S3(n,x) := Sum_{k=0..n} S(n-k,x)*S2(k,x) = Sum_{m=0..floor(n/2)} a(n,m)*x^(n-2*m) with the second convolution S2(n,x) given by array A128503.
Row polynomials P3(n,x) := Sum_{m=0..floor(n/2)} a(n,m)*x^m (increasing powers of x).

Examples

			  1;
  4;
  10,   -4;
  20,  -20;
  35,  -60,  10;
  56, -140,  60;
  84, -280, 210,  -20;
  120,-504, 560, -140;
  ...
n=4: [35,-60,10] stands also for the row polynomial P3(4,x) = 35-60*x+10*x^2.
		

Crossrefs

Row sums (signed array) give A128506. Unsigned row sums are A001872.
Cf. A128503 (k=2 convolution).

Formula

a(n,m) = binomial(n-m+3,3)*binomial(n-m,m)*(-1)^m, m = 0..floor(n/2), n >= 0.
a(n,m) = binomial(m+3,3)*binomial(n-m+3,m+3)*(-1)^m, m = 0..floor(n/2), n >= 0.
G.f. for S3(n,x): 1/(1-x*z+z^2)^4.
G.f. for P3(n,x): 1/(1-z+x*z^2)^4.

Extensions

Name edited by Petros Hadjicostas, Sep 04 2019
Showing 1-3 of 3 results.