cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Alan Shore

Alan Shore's wiki page.

Alan Shore has authored 2 sequences.

A266733 a(n) = 21*binomial(n+6,7).

Original entry on oeis.org

0, 21, 168, 756, 2520, 6930, 16632, 36036, 72072, 135135, 240240, 408408, 668304, 1058148, 1627920, 2441880, 3581424, 5148297, 7268184, 10094700, 13813800, 18648630, 24864840, 32776380, 42751800, 55221075, 70682976, 89713008, 112971936, 141214920, 175301280
Offset: 0

Author

Alan Shore and N. J. A. Sloane, Jan 06 2016

Keywords

Comments

Total number of pips on a set of hexominoes (6-celled linear dominoes) with up to n pips in each cell.

Crossrefs

Row 6 of array in A129533.

Programs

  • Mathematica
    Table[21 Binomial[n+6,7],{n,0,40}] (* Harvey P. Dale, Jan 13 2021 *)
  • PARI
    a(n) = (n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n))/240 \\ Colin Barker, Jan 08 2016
    
  • PARI
    concat(0, Vec(21*x/(1-x)^8 + O(x^40))) \\ Colin Barker, Jan 08 2016

Formula

a(n) = 21*A000580(n+6).
From Colin Barker, Jan 08 2016: (Start)
a(n) = n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)/240.
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8) for n>7.
G.f.: 21*x / (1-x)^8.
(End)

A266732 a(n) = 10*binomial(n+4, 5).

Original entry on oeis.org

0, 10, 60, 210, 560, 1260, 2520, 4620, 7920, 12870, 20020, 30030, 43680, 61880, 85680, 116280, 155040, 203490, 263340, 336490, 425040, 531300, 657800, 807300, 982800, 1187550, 1425060, 1699110, 2013760, 2373360, 2782560, 3246320, 3769920, 4358970, 5019420
Offset: 0

Author

Alan Shore and N. J. A. Sloane, Jan 06 2016

Keywords

Comments

Total number of pips on a set of tetrominoes (4-celled linear dominoes) with up to n pips in each cell.

Crossrefs

Row 4 of array in A129533. Column k=3 in A253283.

Programs

  • Magma
    [10*Binomial(n+4,5): n in [0..30]]; // G. C. Greubel, Nov 24 2017
  • Mathematica
    Join[{0},10*Binomial[Range[0,40]+5,5]] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{0,10,60,210,560,1260},40] (* Harvey P. Dale, Jun 10 2016 *)
  • PARI
    a(n) = (n*(1+n)*(2+n)*(3+n)*(4+n))/12 \\ Colin Barker, Jan 08 2016
    
  • PARI
    concat(0, Vec(10*x/(1-x)^6 + O(x^50))) \\ Colin Barker, Jan 08 2016
    

Formula

From Colin Barker, Jan 08 2016: (Start)
a(n) = n*(1+n)*(2+n)*(3+n)*(4+n)/12.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 5.
G.f.: 10*x / (1-x)^6.
(End)
a(n) = 10*A000389(n+4). - R. J. Mathar, Dec 18 2016
E.g.f.: x*(120 + 240*x + 120*x^2 + 20*x^3 + x^4)*exp(x)/12. - G. C. Greubel, Nov 24 2017