cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253283 Triangle read by rows: coefficients of the partial fraction decomposition of [d^n/dx^n] (x/(1-x))^n/n!.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 3, 12, 10, 0, 4, 30, 60, 35, 0, 5, 60, 210, 280, 126, 0, 6, 105, 560, 1260, 1260, 462, 0, 7, 168, 1260, 4200, 6930, 5544, 1716, 0, 8, 252, 2520, 11550, 27720, 36036, 24024, 6435, 0, 9, 360, 4620, 27720, 90090, 168168, 180180, 102960, 24310
Offset: 0

Views

Author

Peter Luschny, Mar 20 2015

Keywords

Comments

The rows give (up to sign) the coefficients in the expansion of the integer-valued polynomial (x+1)^2*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1) / (n!*(n+1)!) in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 31 2022
This is related to the cluster fans of type B (see Fomin and Zelevinsky reference) - F. Chapoton, Nov 17 2022.

Examples

			[1]
[0, 1]
[0, 2,   3]
[0, 3,  12,   10]
[0, 4,  30,   60,   35]
[0, 5,  60,  210,  280,  126]
[0, 6, 105,  560, 1260, 1260,  462]
[0, 7, 168, 1260, 4200, 6930, 5544, 1716]
.
R_0(x) = 1/(x-1)^0.
R_1(x) = 0/(x-1)^1 + 1/(x-1)^2.
R_2(x) = 0/(x-1)^2 + 2/(x-1)^3 + 3/(x-1)^4.
R_3(x) = 0/(x-1)^3 + 3/(x-1)^4 + 12/(x-1)^5 + 10/(x-1)^6.
Then k!*[x^k] R_n(x) is A001286(k+2) and A001754(k+3) for n = 2, 3 respectively.
.
Seen as an array A(n, k) = binomial(n + k, k)*binomial(n + 2*k - 1, n + k):
[0] 1, 1,   3,   10,    35,    126,     462, ...
[1] 0, 2,  12,   60,   280,   1260,    5544, ...
[2] 0, 3,  30,  210,  1260,   6930,   36036, ...
[3] 0, 4,  60,  560,  4200,  27720,  168168, ...
[4] 0, 5, 105, 1260, 11550,  90090,  630630, ...
[5] 0, 6, 168, 2520, 27720, 252252, 2018016, ...
[6] 0, 7, 252, 4620, 60060, 630630, 5717712, ...
		

Crossrefs

T(n, n) = C(2*n-1, n) = A001700(n-1).
T(n, n-1) = A005430(n-1) for n >= 1.
T(n, n-2) = A051133(n-2) for n >= 2.
T(n, 2) = A027480(n-1) for n >= 2.
T(2*n, n) = A208881(n) for n >= 0.
A002002 (row sums).

Programs

  • Maple
    T_row := proc(n) local egf, k, F, t;
    if n=0 then RETURN(1) fi;
    egf := (x/(1-x))^n/n!; t := diff(egf,[x$n]);
    F := convert(t,parfrac,x);
    # print(seq(k!*coeff(series(F,x,20),x,k),k=0..7));
    # gives A000142, A001286, A001754, A001755, A001777, ...
    seq(coeff(F,(x-1)^(-k)),k=n..2*n) end:
    seq(print(T_row(n)),n=0..7);
    # 2nd version by R. J. Mathar, Dec 18 2016:
    A253283 := proc(n,k)
        binomial(n,k)*binomial(n+k-1,k-1) ;
    end proc:
  • Mathematica
    Table[Binomial[n, k] Binomial[n + k - 1, k - 1], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 22 2017 *)
  • PARI
    T(n,k) = binomial(n,k)*binomial(n+k-1,k-1);
    tabl(nn) = for(n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Apr 29 2018

Formula

The exponential generating functions for the rows of the square array L(n,k) = ((n+k)!/n!)*C(n+k-1,n-1) (associated to the unsigned Lah numbers) are given by R_n(x) = Sum_{k=0..n} T(n,k)/(x-1)^(n+k).
T(n,k) = C(n,k)*C(n+k-1,k-1).
Sum_{k=0..n} T(n,k) = (-1)^n*hypergeom([-n,n],[1],2) = (-1)^n*A182626(n).
Row generating function: Sum_{k>=1} T(n,k)*z^k = z*n* 2F1(1-n,n+1 ; 2; -z). - R. J. Mathar, Dec 18 2016
From Peter Bala, Feb 22 2017: (Start)
G.f.: (1/2)*( 1 + (1 - t)/sqrt(1 - 2*(2*x + 1)*t + t^2) ) = 1 + x*t + (2*x + 3*x^2)*t^2 + (3*x + 12*x^2 + 10*x^3)*t^3 + ....
n-th row polynomial R(n,x) = (1/2)*(LegendreP(n, 2*x + 1) - LegendreP(n-1, 2*x + 1)) for n >= 1.
The row polynomials are the black diamond product of the polynomials x^n and x^(n+1) (see Dukes and White 2016 for the definition of this product).
exp(Sum_{n >= 1} R(n,x)*t^n/n) = 1 + x*t + x*(1 + 2*x)*t^2 + x*(1 + 5*x + 5*x^2)*t^3 + ... is a g.f. for A033282, but with a different offset.
The polynomials P(n,x) := (-1)^n/n!*x^(2*n)*(d/dx)^n(1 + 1/x)^n begin 1, 3 + 2*x , 10 + 12*x + 3*x^2, ... and are the row polynomials for the row reverse of this triangle. (End)
Let Q(n, x) = Sum_{j=0..n} (-1)^(n - j)*A269944(n, j)*x^(2*j - 1) and P(x, y) = (LegendreP(x, 2*y + 1) - LegendreP(x-1, 2*y + 1)) / 2 (see Peter Bala above). Then n!*(n - 1)!*[y^n] P(x, y) = Q(n, x) for n >= 1. - Peter Luschny, Oct 31 2022
From Peter Bala, Apr 18 2024: (Start)
G.f.: Sum_{n >= 0} binomial(2*n-1, n)*(x*t)^n/(1 - t)^(2*n) = 1 + x*t + (2*x + 3*x^2)*t^2 + (3*x + 12*x^2 + 10*x^3)*t^3 + ....
n-th row polynomial R(n, x) = [t^n] ( (1 - t)/(1 - (1 + x)*t) )^n.
It follows that for integer x, the sequence {R(n, x) : n >= 0} satisfies the Gauss congruences: R(n*p^r, x) == R(n*p^(r-1), x) (mod p^r) for all primes p and positive integers n and r.
R(n, -2) = (-1)^n * A002003(n) for n >= 1.
R(n, 3) = A299507(n). (End)

A129533 Array read by antidiagonals: T(n,k) = binomial(n+1,2)*binomial(n+k,n+1) for 0 <= k <= n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 6, 12, 6, 0, 0, 10, 30, 30, 10, 0, 0, 15, 60, 90, 60, 15, 0, 0, 21, 105, 210, 210, 105, 21, 0, 0, 28, 168, 420, 560, 420, 168, 28, 0, 0, 36, 252, 756, 1260, 1260, 756, 252, 36, 0, 0, 45, 360, 1260, 2520, 3150, 2520, 1260, 360, 45, 0, 0, 55, 495
Offset: 0

Views

Author

Emeric Deutsch, Apr 22 2007

Keywords

Comments

Previous name was: Triangle read by rows: T(n,k)=derivative of the q-binomial coefficient [n,k] evaluated at q=1 (0<=k<=n). - N. J. A. Sloane, Jan 06 2016
For example, T(5,2)=30 because [5,2] = q^6 + q^5 + 2*q^4 + 2*q^3 + 2*q^2 + q + 1 with derivative 6q^5 + 5q^4 + 8q^3 + 6q^2 + 4q + 1, having value 30 at q=1. - Emeric Deutsch, Apr 22 2007
Sum of entries in n-th antidiagonal = n(n-1)2^(n-3) = A001788(n-1).
T(n,k) = A094305(n-2, k-1) for n >= 2, k >= 1.
T(n,k) is total number of pips on a set of generalized linear dominoes with n cells (rather than two) and with the number of pips in each cell running from 0 to k (rather than 6). T(2,6) = 168 gives the total number of pips on a standard set of dominoes. We regard a generalized linear domino with n cells and up to k pips per cell as an ordered n-tuple [i_1, i_2, ..., i_n] with 0 <= i_1 <= i_2 <= ... <= i_n <= k. - Alan Shore and N. J. A. Sloane, Jan 06 2016
T(n,k) can also be written more symmetrically as the trinomial coefficient (n+k; n-1, k-1, 2). - N. J. A. Sloane, Jan 06 2016
As a triangle read by rows, T(n,k) is the total number of inversions over all length n binary words having exactly k 1's. T(n,k) is also the total area above all North East lattice paths from the origin to the point (k,n-k). - Geoffrey Critzer, Mar 22 2018

Examples

			Array begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... (A000004)
0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, ... (A000217)
0, 3, 12, 30, 60, 105, 168, 252, 360, 495, 660, 858, ... (A027480)
0, 6, 30, 90, 210, 420, 756, 1260, 1980, 2970, 4290, ... (A033487)
0, 10, 60, 210, 560, 1260, 2520, 4620, 7920, 12870, ... (A266732)
0, 15, 105, 420, 1260, 3150, 6930, 13860, 25740, ... (A240440)
0, 21, 168, 756, 2520, 6930, 16632, 36036, ... (A266733)
...
If regarded as a triangle, this begins:
  0;
  0,  0;
  0,  1,  0;
  0,  3,  3,  0;
  0,  6, 12,  6,  0;
  0, 10, 30, 30, 10,  0;
  0, 15, 60, 90, 60, 15, 0;
  ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976.

Crossrefs

Cf. A001788.
A128503 and A094305 are very similar sequences.

Programs

  • Maple
    dd:=proc(n,m) if m=0 or n=0 then 0 else (m+n)!/(2*(m-1)!*(n-1)!); fi; end;
    f:=n->[seq(dd(n,m),m=0..30)];
    for n from 0 to 10 do lprint(f(n)); od: # produces sequence as square array
    T:=(n,k)->k*(k+1)*binomial(n,k+1)/2: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    Table[Table[D[Expand[FunctionExpand[QBinomial[n, k, q]]], q] /. q -> 1, {k, 0, n}], {n, 0, 15}] // Grid (* Geoffrey Critzer, Mar 22 2018 *)

Formula

T(n,k) = (1/2)*k*(k+1)*binomial(n,k+1).
G.f.: G(q,z) = qz^2/(1-z-qz)^3.

Extensions

Entry revised by N. J. A. Sloane, Jan 06 2016
Showing 1-2 of 2 results.