cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A027480 a(n) = n*(n+1)*(n+2)/2.

Original entry on oeis.org

0, 3, 12, 30, 60, 105, 168, 252, 360, 495, 660, 858, 1092, 1365, 1680, 2040, 2448, 2907, 3420, 3990, 4620, 5313, 6072, 6900, 7800, 8775, 9828, 10962, 12180, 13485, 14880, 16368, 17952, 19635, 21420, 23310, 25308, 27417, 29640, 31980, 34440
Offset: 0

Views

Author

Olivier Gérard and Ken Knowlton (kcknowlton(AT)aol.com)

Keywords

Comments

Write the integers in groups: 0; 1,2; 3,4,5; 6,7,8,9; ... and add the groups: a(n) = Sum_{j=0..n} (A000217(n)+j), row sums of the triangular view of A001477. - Asher Auel, Jan 06 2000
With offset = 2, a(n) is the number of edges of the line graph of the complete graph of order n, L(K_n). - Roberto E. Martinez II, Jan 07 2002
Also the total number of pips on a set of dominoes of type n. (A "3" domino set would have 0-0, 0-1, 0-2, 0-3, 1-1, 1-2, 1-3, 2-2, 2-3, 3-3.) - Gerard Schildberger, Jun 26 2003. See A129533 for generalization to n-armed "dominoes". - N. J. A. Sloane, Jan 06 2016
Common sum in an (n+1) X (n+1) magic square with entries (0..n^2-1).
Alternate terms of A057587. - Jeremy Gardiner, Apr 10 2005
If Y is a 3-subset of an n-set X then, for n >= 5, a(n-5) is the number of 4-subsets of X which have exactly one element in common with Y. Also, if Y is a 3-subset of an n-set X then, for n >= 5, a(n-5) is the number of (n-5)-subsets of X which have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
These numbers, starting with 3, are the denominators of the power series f(x) = (1-x)^2 * log(1/(1-x)), if the numerators are kept at 1. This sequence of denominators starts at the term x^3/3. - Miklos Bona, Feb 18 2009
a(n) is the number of triples (w,x,y) having all terms in {0..n} and satisfying at least one of the inequalities x+y < w, y+w < x, w+x < y. - Clark Kimberling, Jun 14 2012
From Martin Licht, Dec 04 2016: (Start)
Let b(n) = (n+1)(n+2)(n+3)/2 (the same sequence, but with a different offset). Then (see Arnold et al., 2006):
b(n) is the dimension of the Nédélec space of the second kind of polynomials of order n over a tetrahedron.
b(n-1) is the dimension of the curl-conforming Nédélec space of the first kind of polynomials of order n with tangential boundary conditions over a tetrahedron.
b(n) is the dimension of the divergence-conforming Nédélec space of the first kind of polynomials of order n with normal boundary conditions over a tetrahedron. (End)
After a(0), the digital root has period 9: repeat [3, 3, 3, 6, 6, 6, 9, 9, 9]. - Peter M. Chema, Jan 19 2017

Examples

			Row sums of n consecutive integers, starting at 0, seen as a triangle:
.
    0 |  0
    3 |  1  2
   12 |  3  4  5
   30 |  6  7  8  9
   60 | 10 11 12 13 14
  105 | 15 16 17 18 19 20
		

Crossrefs

1/beta(n, 3) in A061928.
A row of array in A129533.
Cf. similar sequences of the type n*(n+1)*(n+k)/2 listed in A267370.
Similar sequences are listed in A316224.
Third column of A003506.
A bisection of A330298.

Programs

  • Magma
    [n*(n+1)*(n+2)/2: n in [0..40]]; // Vincenzo Librandi, Nov 14 2014
    
  • Maple
    [seq(3*binomial(n+2,3),n=0..37)]; # Zerinvary Lajos, Nov 24 2006
    a := n -> add((j+n)*(n+2)/3,j=0..n): seq(a(n),n=0..35); # Zerinvary Lajos, Dec 17 2006
  • Mathematica
    Table[(m^3 - m)/2, {m, 36}] (* Zerinvary Lajos, Mar 21 2007 *)
    LinearRecurrence[{4,-6,4,-1},{0,3,12,30},40] (* Harvey P. Dale, Oct 10 2012 *)
    CoefficientList[Series[3 x / (x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 14 2014 *)
    With[{nn=50},Total/@TakeList[Range[0,(nn(nn+1))/2-1],Range[nn]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Jun 02 2019 *)
  • PARI
    a(n)=3*binomial(n+2,3) \\ Charles R Greathouse IV, May 23 2011
    
  • Python
    def a(n): return (n**3+3*n**2+2*n)//2 # _Torlach Rush, Jun 16 2024

Formula

a(n) = a(n-1) + A050534(n) = 3*A000292(n-1) = A050534(n) - A050534(n-1).
a(n) = n*binomial(2+n, 2). - Zerinvary Lajos, Jan 10 2006
a(n) = A007531(n+2)/2. - Zerinvary Lajos, Jul 17 2006
Starting with offset 1 = binomial transform of [3, 9, 9, 3, 0, 0, 0]. - Gary W. Adamson, Oct 25 2007
From R. J. Mathar, Apr 07 2009: (Start)
G.f.: 3*x/(x-1)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
a(n) = Sum_{i=0..n} n*(n - i) + 2*i. - Bruno Berselli, Jan 13 2016
From Ilya Gutkovskiy, Aug 07 2016: (Start)
E.g.f.: x*(6 + 6*x + x^2)*exp(x)/2.
a(n) = Sum_{k=0..n} A045943(k).
Sum_{n>=1} 1/a(n) = 1/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (8*log(2) - 5)/2 = 0.2725887222397812... = A016639/10. (End)
a(n-1) = binomial(n^2,2)/n for n > 0. - Jonathan Sondow, Jan 07 2018
For k > 1, Sum_{i=0..n^2-1} (k+i)^2 = (k*n + a(k-1))^2 + A126275(k). - Charlie Marion, Apr 23 2021

A033487 a(n) = n*(n+1)*(n+2)*(n+3)/4.

Original entry on oeis.org

0, 6, 30, 90, 210, 420, 756, 1260, 1980, 2970, 4290, 6006, 8190, 10920, 14280, 18360, 23256, 29070, 35910, 43890, 53130, 63756, 75900, 89700, 105300, 122850, 142506, 164430, 188790, 215760, 245520, 278256, 314160, 353430, 396270, 442890, 493506, 548340, 607620
Offset: 0

Views

Author

Keywords

Comments

Non-vanishing diagonal of (A132440)^4/4. Third subdiagonal of unsigned A238363 without the zero. Cf. A130534 for relations to colored forests, disposition of flags on flagpoles, and colorings of the vertices of the complete graph K_4. - Tom Copeland, Apr 05 2014
Total number of pips on a set of trominoes (3-armed dominoes) with up to n pips on each arm. - Alan Shore and N. J. A. Sloane, Jan 06 2016
Also the number of minimum connected dominating sets in the (n+2)-crown graph. - Eric W. Weisstein, Jun 29 2017
Crossing number of the (n+3)-cocktail party graph (conjectured). - Eric W. Weisstein, Apr 29 2019
Sum of all numbers in ordered triples (x,y,z) where 0 <= x <= y <= z <= n. - Edward Krogius, Jul 31 2022

Examples

			G.f. = 6*x + 30*x^2 + 90*x^3 + 210*x^4 + 420*x^5 + 756*x^6 + 1260*x^7 + ...
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Partial sums of A007531.
A row of the array in A129533.
A column of the triangle in A331430.
Sequences of the form binomial(n+k,k)*binomial(n+k+2,k): A000012 (k=0), A005563 (k=1), this sequence (k=2), A027790 (k=3), A107395 (k=4), A107396 (k=5), A107397 (k=6), A107398 (k=7), A107399 (k=8).

Programs

Formula

From Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 10 2001: (Start)
G.f.: 6*x/(1-x)^5.
a(n) = 6*binomial(n+3, 4) = 6*A000332(n+3).
a(n) = a(n-1) + A007531(n+1).
a(n) = Sum_{i=0..n} i*(i+1)*(i+2). (End)
Constant term in Bessel polynomial {y_n(x)}''.
a(n) = binomial(n+1,2)*binomial(n+3,2) = A000217(n)*A000217(n+2). - Zerinvary Lajos, May 25 2005
a(n) = binomial(n+2,2)^2 - binomial(n+2,2). - Zerinvary Lajos, May 17 2006
From Zerinvary Lajos, May 11 2007: (Start)
a(n-1) = Sum_{j=1..n} Sum_{i=2..n} i*j.
a(n) = Sum_{j=1..n} j*(n+2)*(n-1)/2. (End)
Sum_{n>0} 1/a(n) = 2/9. - Enrique Pérez Herrero, Nov 10 2013
a(-3-n) = a(n) = 2 * binomial(binomial(n+2, 2), 2). - Michael Somos, Apr 06 2014
a(n) = A002378(binomial(n+2,2)-1). - Salvador Cerdá, Nov 04 2016
a(n) = Sum_{k=0..n} A007531(k+2). See Proof Without Words link. - Michel Marcus, Oct 29 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 16*log(2)/3 - 32/9. - Amiram Eldar, Nov 02 2021
E.g.f.: exp(x)*x*(24 + 36*x + 12*x^2 + x^3)/4. - Stefano Spezia, Jul 03 2025

A094305 Triangle read by rows: T(n,k) = ((n+1)(n+2)/2) * binomial(n,k) (0 <= k <= n).

Original entry on oeis.org

1, 3, 3, 6, 12, 6, 10, 30, 30, 10, 15, 60, 90, 60, 15, 21, 105, 210, 210, 105, 21, 28, 168, 420, 560, 420, 168, 28, 36, 252, 756, 1260, 1260, 756, 252, 36, 45, 360, 1260, 2520, 3150, 2520, 1260, 360, 45, 55, 495, 1980, 4620, 6930, 6930, 4620, 1980, 495, 55, 66
Offset: 0

Views

Author

Amarnath Murthy, Apr 29 2004

Keywords

Comments

Sum of all possible sums of k+1 numbers chosen from among the first n+1 numbers. Additive analog of triangle of Stirling numbers of first kind (A008275). - David Wasserman, Oct 04 2007
Third slice along the 1-2-plane in the cube a(m,n,o) = a(m-1,n,o)+a(m,n-1,o)+a(m,n,o-1) with a(1,0,0)=1 and a(m<>1=0,n>=0,0>=o)=0, for which the first slice is Pascal's triangle (slice read by antidiagonals). - Thomas Wieder, Aug 06 2006
Triangle T(n,k), 0<=k<=n, read by rows given by [3,-1,2/3,-1/6,1/2,0,0,0,0,0,0,...] DELTA [3,-1,2/3,-1/6,1/2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 07 2007
T(n,k) is the number of ordered triples of bit strings with n bits and exactly k 1's over all bits in the triple. For example for n=1 we have (0,e,e),(e,0,e),(e,e,0),(1,e,e),(e,1,e),(e,e,1) where e is the empty string. - Geoffrey Critzer, Apr 06 2013
T(n,k) = A000217(n+1) * A007318(n,k), 0 <= k <= n. - Reinhard Zumkeller, Jul 30 2013

Examples

			Triangle begins:
  1
  3 3
  6 12 6
  10 30 30 10
  15 60 90 60 15
  21 105 210 210 105 21
  ...
The n-th row is the product of the n-th triangular number and the n-th row of Pascal's triangle. The fifth row is (15,60,90,60,15) or 15*{1,4,6,4,1}.
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 152.

Crossrefs

For a closely related array that also includes a row and column of zeros see A129533.
Columns include A000217. Row sums are A001788. Cf. A094306.

Programs

  • Haskell
    a094305 n k = a094305_tabl !! n !! k
    a094305_row n = a094305_tabl !! n
    a094305_tabl = zipWith (map . (*)) (tail a000217_list) a007318_tabl
    -- Reinhard Zumkeller, Jul 30 2013
  • Maple
    A094305:= proc(n,k) (n+1)*(n+2)/2 * binomial(n,k); end;
  • Mathematica
    nn=10; f[list_]:=Select[list,#>0&];a=1/(1-x-y x); Map[f,CoefficientList[Series[a^3,{x,0,nn}],{x,y}]]//Grid
    (* Geoffrey Critzer, Apr 06 2013 *)
    Flatten[Table[((n+1)(n+2))/2 Binomial[n,k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Aug 31 2014 *)

Formula

T(n,k) = Sum_{i=1..k+1} (-1)^(i+1)*i^2*binomial(n+2,k+i+1)*binomial(n+2,k-i+1). - Mircea Merca, Apr 05 2012
O.g.f.: 1/(1 - x - y*x)^3. - Geoffrey Critzer, Apr 06 2013

Extensions

Edited by Ralf Stephan, Feb 04 2005
Further comments from David Wasserman, Oct 04 2007
Further editing by N. J. A. Sloane, Oct 07 2007

A240440 Number of ways to place 3 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.

Original entry on oeis.org

0, 0, 15, 105, 420, 1260, 3150, 6930, 13860, 25740, 45045, 75075, 120120, 185640, 278460, 406980, 581400, 813960, 1119195, 1514205, 2018940, 2656500, 3453450, 4440150, 5651100, 7125300, 8906625, 11044215, 13592880, 16613520, 20173560, 24347400, 29216880
Offset: 1

Views

Author

Heinrich Ludwig, Apr 08 2014

Keywords

Comments

a(n) = 15 * A000579(n+3).
a(n) = A001498(n,3), the fourth column of coefficients of Bessel polynomials. - Ran Pan, Dec 03 2015

Crossrefs

If one of the initial zeros is omitted, this is a row of the array in A129533.

Programs

  • Magma
    [(n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48 : n in [1..50]]; // Wesley Ivan Hurt, Dec 03 2015
    
  • Maple
    A240440:=n->(n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48; seq(A240440(n), n=1..50); # Wesley Ivan Hurt, Apr 08 2014
  • Mathematica
    Table[(n+3)(n+2)(n+1)n(n-1)(n-2)/48, {n, 50}] (* Wesley Ivan Hurt, Apr 08 2014 *)
    CoefficientList[Series[15 x^2/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 19 2014 *)
  • PARI
    Vec(15*x^3/(1-x)^7 + O(x^100)) \\ Colin Barker, Apr 18 2014
    
  • PARI
    vector(100,n,(n^2-1)*(n^2-4)*(n+3)*n/48) \\ Derek Orr, Dec 24 2015

Formula

a(n) = (n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48.
G.f.: 15*x^3 / (1-x)^7. - Colin Barker, Apr 18 2014
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7) for n>7. - Wesley Ivan Hurt, Dec 03 2015

A266732 a(n) = 10*binomial(n+4, 5).

Original entry on oeis.org

0, 10, 60, 210, 560, 1260, 2520, 4620, 7920, 12870, 20020, 30030, 43680, 61880, 85680, 116280, 155040, 203490, 263340, 336490, 425040, 531300, 657800, 807300, 982800, 1187550, 1425060, 1699110, 2013760, 2373360, 2782560, 3246320, 3769920, 4358970, 5019420
Offset: 0

Views

Author

Alan Shore and N. J. A. Sloane, Jan 06 2016

Keywords

Comments

Total number of pips on a set of tetrominoes (4-celled linear dominoes) with up to n pips in each cell.

Crossrefs

Row 4 of array in A129533. Column k=3 in A253283.

Programs

  • Magma
    [10*Binomial(n+4,5): n in [0..30]]; // G. C. Greubel, Nov 24 2017
  • Mathematica
    Join[{0},10*Binomial[Range[0,40]+5,5]] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{0,10,60,210,560,1260},40] (* Harvey P. Dale, Jun 10 2016 *)
  • PARI
    a(n) = (n*(1+n)*(2+n)*(3+n)*(4+n))/12 \\ Colin Barker, Jan 08 2016
    
  • PARI
    concat(0, Vec(10*x/(1-x)^6 + O(x^50))) \\ Colin Barker, Jan 08 2016
    

Formula

From Colin Barker, Jan 08 2016: (Start)
a(n) = n*(1+n)*(2+n)*(3+n)*(4+n)/12.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 5.
G.f.: 10*x / (1-x)^6.
(End)
a(n) = 10*A000389(n+4). - R. J. Mathar, Dec 18 2016
E.g.f.: x*(120 + 240*x + 120*x^2 + 20*x^3 + x^4)*exp(x)/12. - G. C. Greubel, Nov 24 2017

A266733 a(n) = 21*binomial(n+6,7).

Original entry on oeis.org

0, 21, 168, 756, 2520, 6930, 16632, 36036, 72072, 135135, 240240, 408408, 668304, 1058148, 1627920, 2441880, 3581424, 5148297, 7268184, 10094700, 13813800, 18648630, 24864840, 32776380, 42751800, 55221075, 70682976, 89713008, 112971936, 141214920, 175301280
Offset: 0

Views

Author

Alan Shore and N. J. A. Sloane, Jan 06 2016

Keywords

Comments

Total number of pips on a set of hexominoes (6-celled linear dominoes) with up to n pips in each cell.

Crossrefs

Row 6 of array in A129533.

Programs

  • Mathematica
    Table[21 Binomial[n+6,7],{n,0,40}] (* Harvey P. Dale, Jan 13 2021 *)
  • PARI
    a(n) = (n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n))/240 \\ Colin Barker, Jan 08 2016
    
  • PARI
    concat(0, Vec(21*x/(1-x)^8 + O(x^40))) \\ Colin Barker, Jan 08 2016

Formula

a(n) = 21*A000580(n+6).
From Colin Barker, Jan 08 2016: (Start)
a(n) = n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)/240.
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8) for n>7.
G.f.: 21*x / (1-x)^8.
(End)
Showing 1-6 of 6 results.