A129533 Array read by antidiagonals: T(n,k) = binomial(n+1,2)*binomial(n+k,n+1) for 0 <= k <= n.
0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 6, 12, 6, 0, 0, 10, 30, 30, 10, 0, 0, 15, 60, 90, 60, 15, 0, 0, 21, 105, 210, 210, 105, 21, 0, 0, 28, 168, 420, 560, 420, 168, 28, 0, 0, 36, 252, 756, 1260, 1260, 756, 252, 36, 0, 0, 45, 360, 1260, 2520, 3150, 2520, 1260, 360, 45, 0, 0, 55, 495
Offset: 0
Examples
Array begins: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... (A000004) 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, ... (A000217) 0, 3, 12, 30, 60, 105, 168, 252, 360, 495, 660, 858, ... (A027480) 0, 6, 30, 90, 210, 420, 756, 1260, 1980, 2970, 4290, ... (A033487) 0, 10, 60, 210, 560, 1260, 2520, 4620, 7920, 12870, ... (A266732) 0, 15, 105, 420, 1260, 3150, 6930, 13860, 25740, ... (A240440) 0, 21, 168, 756, 2520, 6930, 16632, 36036, ... (A266733) ... If regarded as a triangle, this begins: 0; 0, 0; 0, 1, 0; 0, 3, 3, 0; 0, 6, 12, 6, 0; 0, 10, 30, 30, 10, 0; 0, 15, 60, 90, 60, 15, 0; ...
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976.
Links
- Cemil Karaçam and Alper Vural, Enumerating 2D and 3D lattice paths with arbitrary steps, Mathematica Bohemica, pp. 1-13 (2025). See p. 5.
- Index entries for sequences related to dominoes.
Crossrefs
Programs
-
Maple
dd:=proc(n,m) if m=0 or n=0 then 0 else (m+n)!/(2*(m-1)!*(n-1)!); fi; end; f:=n->[seq(dd(n,m),m=0..30)]; for n from 0 to 10 do lprint(f(n)); od: # produces sequence as square array T:=(n,k)->k*(k+1)*binomial(n,k+1)/2: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
Table[Table[D[Expand[FunctionExpand[QBinomial[n, k, q]]], q] /. q -> 1, {k, 0, n}], {n, 0, 15}] // Grid (* Geoffrey Critzer, Mar 22 2018 *)
Formula
T(n,k) = (1/2)*k*(k+1)*binomial(n,k+1).
G.f.: G(q,z) = qz^2/(1-z-qz)^3.
Extensions
Entry revised by N. J. A. Sloane, Jan 06 2016
Comments