cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A007290 a(n) = 2*binomial(n,3).

Original entry on oeis.org

0, 0, 0, 2, 8, 20, 40, 70, 112, 168, 240, 330, 440, 572, 728, 910, 1120, 1360, 1632, 1938, 2280, 2660, 3080, 3542, 4048, 4600, 5200, 5850, 6552, 7308, 8120, 8990, 9920, 10912, 11968, 13090, 14280, 15540, 16872, 18278, 19760, 21320, 22960, 24682, 26488, 28380, 30360, 32430, 34592, 36848, 39200
Offset: 0

Views

Author

Keywords

Comments

Number of acute triangles made from the vertices of a regular n-polygon when n is even (cf. A000330). - Sen-Peng Eu, Apr 05 2001
a(n+2) is (-1)*coefficient of X in Zagier's polynomial (n,n-1). - Benoit Cloitre, Oct 12 2002
Definite integrals of certain products of 2 derivatives of (orthogonal) Chebyshev polynomials of the 2nd kind are pi-multiple of this sequence. For even (p+q): Integrate[ D[ChebyshevU[p, x], x] D[ChebyshevU[q, x], x] (1 - x^2)^(1/2), {x,-1,1}] / Pi = a(n), where n=Min[p,q]. Example: a(3)=20 because Integrate[ D[ChebyshevU[3, x], x] D[ChebyshevU[5, x], x] (1 - x^2)^(1/2), {x,-1,1}]/Pi = 20 since 3=Min[3,5] and 3+5 is even. - Christoph Pacher (Christoph.Pacher(AT)arcs.ac.at), Dec 16 2004
If Y is a 2-subset of an n-set X then, for n>=3, a(n-1) is the number of 3-subsets and 4-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
a(n) is also the number of proper colorings of the cycle graph Csub3 (also the complete graph Ksub3) when n colors are available. - Gary E. Stevens, Dec 28 2008
a(n) is the reverse Wiener index of the path graph with n vertices. See the Balaban et al. reference, p. 927.
For n > 1: a(n) = sum of (n-1)-th row of A141418. - Reinhard Zumkeller, Nov 18 2012
This is the sequence for nuclear magic numbers in an idealized spherical nucleus under the harmonic oscillator model. - Jess Tauber, May 20 2013
Shifted non-vanishing diagonal of A132440^3/3. Second subdiagonal of A238363 (without zeros). For n>0, a(n+2)=n*(n+1)*(n+2)/3. Cf. A130534 for relations to colored forests and disposition of flags on flagpoles. - Tom Copeland, Apr 05 2014
a(n) is the number of ordered rooted trees with n non-root nodes that have 2 leaves; see A108838. - Joerg Arndt, Aug 18 2014
Number of floating point multiplications in the factorization of an (n-1)X(n-1) real matrix by Gaussian elimination as e.g. implemented in LINPACK subroutines sgefa.f or dgefa.f. The number of additions is given by A000330. - Hugo Pfoertner, Mar 28 2018
a(n+1) = Max_{s in S_n} Sum_{k=1..n} (k - s(k))^2 where S_n is the symmetric group of permutations of [1..n]; this maximum is obtained with the permutation s = (1, n) (2, n-1) (3, n-2) ... (k, n-k+1). (see Protat reference). - Bernard Schott, Dec 26 2022

References

  • Luigi Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906, p. 352.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 259.
  • Maurice Protat, Des Olympiades à l'Agrégation, un problème de maximum, Problème 36, p. 83, Ellipses, Paris 1997.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A059419. Partial sums of A002378.
A diagonal of A008291. Row 3 of A074650.

Programs

  • Haskell
    a007290 n = if n < 3 then 0 else 2 * a007318 n 3  -- Reinhard Zumkeller, Nov 18 2012
    
  • Magma
    I:=[0, 0, 0, 2]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 19 2012
    
  • Maple
    A007290 := proc(n) 2*binomial(n,3) end proc:
  • Mathematica
    Table[Integrate[ D[ChebyshevU[n, x], x] D[ChebyshevU[n, x], x] (1 - x^2)^(1/2), {x, -1, 1}]/Pi, {n, 1, 20}] (* Pacher *)
    LinearRecurrence[{4,-6,4,-1},{0,0,0,2},50] (* Vincenzo Librandi, Jun 19 2012 *)
  • PARI
    my(x='x+O('x^100)); concat([0, 0, 0], Vec(2*x^3/(1-x)^4)) \\ Altug Alkan, Nov 01 2015
    
  • PARI
    apply( {A007290(n)=binomial(n,3)*2}, [0..55]) \\ M. F. Hasler, Jul 02 2021

Formula

G.f.: 2*x^3/(1-x)^4.
a(n) = a(n-1)*n/(n-3) = a(n-1) + A002378(n-2) = 2*A000292(n-2) = Sum_{i=0..n-2} i*(i+1) = n*(n-1)*(n-2)/3. - Henry Bottomley, Jun 02 2000 [Formula corrected by R. J. Mathar, Dec 13 2010]
a(n) = A000217(n-2) + A000330(n-2), n>1. - Reinhard Zumkeller, Mar 20 2008
a(n+1) = A000330(n) - A000217(n), n>=0. - Zak Seidov, Aug 07 2010
a(n) = A033487(n-2) - A052149(n-1) for n>1. - Bruno Berselli, Dec 10 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 19 2012
a(n) = (2*n - 3*n^2 + n^3)/3. - T. D. Noe, May 20 2013
a(n+1) = A002412(n) - A000330(n) or "Hex Pyramidal" - "Square Pyramidal" (as can also be seen via above formula). - Richard R. Forberg, Aug 07 2013
Sum_{n>=3} 1/a(n) = 3/4. - Enrique Pérez Herrero, Nov 10 2013
E.g.f.: exp(x)*x^3/3. - Geoffrey Critzer, Nov 22 2015
a(n+2) = delta(-n) = -delta(n) for n >= 0, where delta is the p-derivation over the integers with respect to prime p = 3. - Danny Rorabaugh, Nov 10 2017
(a(n) + a(n+1))/2 = A000330(n-1). - Ezhilarasu Velayutham, Apr 05 2019
Sum_{n>=3} (-1)^(n+1)/a(n) = 6*log(2) - 15/4. - Amiram Eldar, Jan 09 2022
a(n) = Sum_{m=0..n-2} Sum_{k=0..n-2} abs(m-k). - Nicolas Bělohoubek, Nov 06 2022
From Bernard Schott, Jan 04 2023: (Start)
a(n) = 2 * A000292(n-2), for n >= 2.
a(n+1) = 2 *Sum_{k=1..floor(n/2)} (n-(2k-1))^2, for n >= 2. (End)

A130534 Triangle T(n,k), 0 <= k <= n, read by rows, giving coefficients of the polynomial (x+1)(x+2)...(x+n), expanded in increasing powers of x. T(n,k) is also the unsigned Stirling number |s(n+1, k+1)|, denoting the number of permutations on n+1 elements that contain exactly k+1 cycles.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 11, 6, 1, 24, 50, 35, 10, 1, 120, 274, 225, 85, 15, 1, 720, 1764, 1624, 735, 175, 21, 1, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 09 2007

Keywords

Comments

This triangle is an unsigned version of the triangle of Stirling numbers of the first kind, A008275, which is the main entry for these numbers. - N. J. A. Sloane, Jan 25 2011
Or, triangle T(n,k), 0 <= k <= n, read by rows given by [1,1,2,2,3,3,4,4,5,5,6,6,...] DELTA [1,0,1,0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938.
Reversal of A094638.
Equals A132393*A007318, as infinite lower triangular matrices. - Philippe Deléham, Nov 13 2007
From Johannes W. Meijer, Oct 07 2009: (Start)
The higher order exponential integrals E(x,m,n) are defined in A163931. The asymptotic expansion of the exponential integrals E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + n*(n+1)/x^2 - n*(n+1)*(n+2)/x^3 + ...), see Abramowitz and Stegun. This formula follows from the general formula for the asymptotic expansion, see A163932. We rewrite E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + (n^2+n)/x^2 - (2*n+3*n^2+n^3)/x^3 + (6*n+11*n^2+6*n^3+n^4)/x^3 - ...) and observe that the T(n,m) are the polynomials coefficients in the denominators. Looking at the a(n,m) formula of A028421, A163932 and A163934, and shifting the offset given above to 1, we can write T(n-1,m-1) = a(n,m) = (-1)^(n+m)*Stirling1(n,m), see the Maple program.
The asymptotic expansion leads for values of n from one to eleven to known sequences, see the cross-references. With these sequences one can form the triangles A008279 (right-hand columns) and A094587 (left-hand columns).
See A163936 for information about the o.g.f.s. of the right-hand columns of this triangle.
(End)
The number of elements greater than i to the left of i in a permutation gives the i-th element of the inversion vector. (Skiena-Pemmaraju 2003, p. 69.) T(n,k) is the number of n-permutations that have exactly k 0's in their inversion vector. See evidence in Mathematica code below. - Geoffrey Critzer, May 07 2010
T(n,k) counts the rooted trees with k+1 trunks in forests of "naturally grown" rooted trees with n+2 nodes. This corresponds to sums of coefficients of iterated derivatives representing vectors, Lie derivatives, or infinitesimal generators for flow fields and formal group laws. Cf. links in A139605. - Tom Copeland, Mar 23 2014
A refinement is A036039. - Tom Copeland, Mar 30 2014
From Tom Copeland, Apr 05 2014: (Start)
With initial n=1 and row polynomials of T as p(n,x)=x(x+1)...(x+n-1), the powers of x correspond to the number of trunks of the rooted trees of the "naturally-grown" forest referred to above. With each trunk allowed m colors, p(n,m) gives the number of such non-plane colored trees for the forest with each tree having n+1 vertices.
p(2,m) = m + m^2 = A002378(m) = 2*A000217(m) = 2*(first subdiag of |A238363|).
p(3,m) = 2m + 3m^2 + m^3 = A007531(m+2) = 3*A007290(m+2) = 3*(second subdiag A238363).
p(4,m) = 6m + 11m^2 + 6m^3 + m^4 = A052762(m+3) = 4*A033487(m) = 4*(third subdiag).
From the Joni et al. link, p(n,m) also represents the disposition of n distinguishable flags on m distinguishable flagpoles.
The chromatic polynomial for the complete graph K_n is the falling factorial, which encodes the colorings of the n vertices of K_n and gives a shifted version of p(n,m).
E.g.f. for the row polynomials: (1-y)^(-x).
(End)
A relation to derivatives of the determinant |V(n)| of the n X n Vandermonde matrix V(n) in the indeterminates c(1) thru c(n):
|V(n)| = Product_{1<=jTom Copeland, Apr 10 2014
From Peter Bala, Jul 21 2014: (Start)
Let M denote the lower unit triangular array A094587 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well defined). See the Example section. (End)
For the relation of this rising factorial to the moments of Viennot's Laguerre stories, see the Hetyei link, p. 4. - Tom Copeland, Oct 01 2015
Can also be seen as the Bell transform of n! without column 0 (and shifted enumeration). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle  T(n,k) begins:
n\k         0        1        2       3       4      5      6     7    8  9 10
n=0:        1
n=1:        1        1
n=2:        2        3        1
n=3:        6       11        6       1
n=4:       24       50       35      10       1
n=5:      120      274      225      85      15      1
n=6:      720     1764     1624     735     175     21      1
n=7:     5040    13068    13132    6769    1960    322     28     1
n=8:    40320   109584   118124   67284   22449   4536    546    36    1
n=9:   362880  1026576  1172700  723680  269325  63273   9450   870   45  1
n=10: 3628800 10628640 12753576 8409500 3416930 902055 157773 18150 1320 55  1
[Reformatted and extended by _Wolfdieter Lang_, Feb 05 2013]
T(3,2) = 6 because there are 6 permutations of {1,2,3,4} that have exactly 2 0's in their inversion vector: {1, 2, 4, 3}, {1, 3, 2, 4}, {1, 3, 4, 2}, {2, 1, 3, 4},{2, 3, 1, 4}, {2, 3, 4, 1}. The respective inversion vectors are {0, 0, 1}, {0, 1, 0}, {0, 2, 0}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}. - _Geoffrey Critzer_, May 07 2010
T(3,1)=11 since there are exactly 11 permutations of {1,2,3,4} with exactly 2 cycles, namely, (1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), (4)(143), (12)(34), (13)(24), and (14)(23). - _Dennis P. Walsh_, Jan 25 2011
From _Peter Bala_, Jul 21 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
  / 1          \/1        \/1        \      / 1           \
  | 1  1       ||0 1      ||0 1      |      | 1  1        |
  | 2  2  1    ||0 1 1    ||0 0 1    |... = | 2  3  1     |
  | 6  6  3 1  ||0 2 2 1  ||0 0 1 1  |      | 6 11  6  1  |
  |24 24 12 4 1||0 6 6 3 1||0 0 2 2 1|      |24 50 35 10 1|
  |...         ||...      ||...      |      |...          |
(End)
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 93-94.
  • Sriram Pemmaraju and Steven Skiena, Computational Discrete Mathematics, Cambridge University Press, 2003, pp. 69-71. [Geoffrey Critzer, May 07 2010]

Crossrefs

See A008275, which is the main entry for these numbers; A094638 (reversed rows).
From Johannes W. Meijer, Oct 07 2009: (Start)
Row sums equal A000142.
The asymptotic expansions lead to A000142 (n=1), A000142(n=2; minus a(0)), A001710 (n=3), A001715 (n=4), A001720 (n=5), A001725 (n=6), A001730 (n=7), A049388 (n=8), A049389 (n=9), A049398 (n=10), A051431 (n=11), A008279 and A094587.
Cf. A163931 (E(x,m,n)), A028421 (m=2), A163932 (m=3), A163934 (m=4), A163936.
(End)
Cf. A136662.

Programs

  • Haskell
    a130534 n k = a130534_tabl !! n !! k
    a130534_row n = a130534_tabl !! n
    a130534_tabl = map (map abs) a008275_tabl
    -- Reinhard Zumkeller, Mar 18 2013
  • Maple
    with(combinat): A130534 := proc(n,m): (-1)^(n+m)*stirling1(n+1,m+1) end proc: seq(seq(A130534(n,m), m=0..n), n=0..10); # Johannes W. Meijer, Oct 07 2009, revised Sep 11 2012
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0 (and shifts the enumeration).
    BellMatrix(n -> n!, 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    Table[Table[ Length[Select[Map[ToInversionVector, Permutations[m]], Count[ #, 0] == n &]], {n, 0, m - 1}], {m, 0, 8}] // Grid (* Geoffrey Critzer, May 07 2010 *)
    rows = 10;
    t = Range[0, rows]!;
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)

Formula

T(0,0) = 1, T(n,k) = 0 if k > n or if n < 0, T(n,k) = T(n-1,k-1) + n*T(n-1,k). T(n,0) = n! = A000142(n). T(2*n,n) = A129505(n+1). Sum_{k=0..n} T(n,k) = (n+1)! = A000142(n+1). Sum_{k=0..n} T(n,k)^2 = A047796(n+1). T(n,k) = |Stirling1(n+1,k+1)|, see A008275. (x+1)(x+2)...(x+n) = Sum_{k=0..n} T(n,k)*x^k. [Corrected by Arie Bos, Jul 11 2008]
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000142(n), A000142(n+1), A001710(n+2), A001715(n+3), A001720(n+4), A001725(n+5), A001730(n+6), A049388(n), A049389(n), A049398(n), A051431(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively. - Philippe Deléham, Nov 13 2007
For k=1..n, let A={a_1,a_2,...,a_k} denote a size-k subset of {1,2,...,n}. Then T(n,n-k) = Sum(Product_{i=1..k} a_i) where the sum is over all subsets A. For example, T(4,1)=50 since 1*2*3 + 1*2*4 + 1*3*4 + 2*3*4 = 50. - Dennis P. Walsh, Jan 25 2011
The preceding formula means T(n,k) = sigma_{n-k}(1,2,3,..,n) with the (n-k)-th elementary symmetric function sigma with the indeterminates chosen as 1,2,...,n. See the Oct 24 2011 comment in A094638 with sigma called there a. - Wolfdieter Lang, Feb 06 2013
From Gary W. Adamson, Jul 08 2011: (Start)
n-th row of the triangle = top row of M^n, where M is the production matrix:
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 6, 4, 1;
... (End)
Exponential Riordan array [1/(1 - x), log(1/(1 - x))]. Recurrence: T(n+1,k+1) = Sum_{i=0..n-k} (n + 1)!/(n + 1 - i)!*T(n-i,k). - Peter Bala, Jul 21 2014

A063007 T(n,k) = binomial(n,k)*binomial(n+k,k), 0 <= k <= n, triangle read by rows.

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 12, 30, 20, 1, 20, 90, 140, 70, 1, 30, 210, 560, 630, 252, 1, 42, 420, 1680, 3150, 2772, 924, 1, 56, 756, 4200, 11550, 16632, 12012, 3432, 1, 72, 1260, 9240, 34650, 72072, 84084, 51480, 12870, 1, 90, 1980, 18480, 90090, 252252, 420420, 411840, 218790, 48620
Offset: 0

Views

Author

Henry Bottomley, Jul 02 2001

Keywords

Comments

T(n,k) is the number of compatible k-sets of cluster variables in Fomin and Zelevinsky's Cluster algebra of finite type B_n. Take a row of this triangle regarded as a polynomial in x and rewrite as a polynomial in y := x+1. The coefficients of the polynomial in y give a row of triangle A008459 (squares of binomial coefficients). For example, x^2+6*x+6 = y^2+4*y+1. - Paul Boddington, Mar 07 2003
T(n,k) is the number of lattice paths from (0,0) to (n,n) using steps E=(1,0), N=(0,1) and D=(1,1) (i.e., bilateral Schroeder paths), having k N=(0,1) steps. E.g. T(2,0)=1 because we have DD; T(2,1) = 6 because we have NED, NDE, EDN, END, DEN and DNE; T(2,2)=6 because we have NNEE, NENE, NEEN, EENN, ENEN and ENNE. - Emeric Deutsch, Apr 20 2004
Another version of [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] = 1; 1, 0; 1, 2, 0; 1, 6, 6, 0; 1, 12, 30, 20, 0; ..., where DELTA is the operator defined in A084938. - Philippe Deléham Apr 15 2005
Terms in row n are the coefficients of the Legendre polynomial P(n,2x+1) with increasing powers of x.
From Peter Bala, Oct 28 2008: (Start)
Row n of this triangle is the f-vector of the simplicial complex dual to an associahedron of type B_n (a cyclohedron) [Fomin & Reading, p.60]. See A008459 for the corresponding h-vectors for associahedra of type B_n and A001263 and A033282 respectively for the h-vectors and f-vectors for associahedra of type A_n.
An alternative description of this triangle in terms of f-vectors is as follows. Let A_n be the root lattice generated as a monoid by {e_i - e_j: 0 <= i,j <= n+1}. Let P(A_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the f-vectors of a unimodular triangulation of P(A_n) [Ardila et al.]. A008459 is the corresponding array of h-vectors for these type A_n polytopes. See A127674 (without the signs) for the array of f-vectors for type C_n polytopes and A108556 for the array of f-vectors associated with type D_n polytopes.
The S-transform on the ring of polynomials is the linear transformation of polynomials that is defined on the basis monomials x^k by S(x^k) = binomial(x,k) = x(x-1)...(x-k+1)/k!. Let P_n(x) denote the S-transform of the n-th row polynomial of this array. In the notation of [Hetyei] these are the Stirling polynomials of the type B associahedra. The first few values are P_1(x) = 2*x + 1, P_2(x) = 3*x^2 + 3*x + 1 and P_3(x) = (10*x^3 + 15*x^2 + 11*x + 3)/3. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane, that is, the polynomials P_n(-x) satisfy a Riemann hypothesis. See A142995 for further details. The sequence of values P_n(k) for k = 0,1,2,3, ... produces the n-th row of A108625. (End)
This is the row reversed version of triangle A104684. - Wolfdieter Lang, Sep 12 2016
T(n, k) is also the number of (n-k)-dimensional faces of a convex n-dimensional Lipschitz polytope of real functions f defined on the set X = {1, 2, ..., n+1} which satisfy the condition f(n+1) = 0 (see Gordon and Petrov). - Stefano Spezia, Sep 25 2021
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial ((x+1)*(x+2)*(x+3)*...*(x+n) / n!)^2 in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 09 2022
Chapoton's observation above is correct: the precise expansion is ((x+1)*(x+2)*(x+3)*...*(x+n)/ n!)^2 = Sum_{k = 0..n} (-1)^k*T(n,n-k)*binomial(x+2*n-k, 2*n-k), as can be verified using the WZ algorithm. For example, n = 3 gives ((x+1)*(x+2)*(x+3)/3!)^2 = 20*binomial(x+6,6) - 30*binomial(x+5,5) + 12*binomial(x+4,4) - binomial(x+3,3). - Peter Bala, Jun 24 2023

Examples

			The triangle T(n, k) starts:
  n\k 0  1    2     3     4      5      6      7      8     9
  0:  1
  1:  1  2
  2:  1  6    6
  3:  1 12   30    20
  4:  1 20   90   140    70
  5:  1 30  210   560   630    252
  6:  1 42  420  1680  3150   2772    924
  7:  1 56  756  4200 11550  16632  12012   3432
  8:  1 72 1260  9240 34650  72072  84084  51480  12870
  9:  1 90 1980 18480 90090 252252 420420 411840 218790 48620
... reformatted by _Wolfdieter Lang_, Sep 12 2016
From _Petros Hadjicostas_, Jul 11 2020: (Start)
Its inverse (from Table II, p. 92, in Ser's book) is
   1;
  -1/2,  1/2;
   1/3, -1/2,    1/6;
  -1/4,  9/20,  -1/4,   1/20;
   1/5, -2/5,    2/7,  -1/10,  1/70;
  -1/6,  5/14, -25/84,  5/36, -1/28,  1/252;
   1/7, -9/28,  25/84, -1/6,   9/154, -1/84, 1/924;
   ... (End)
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 366.
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, Table I, p. 92.
  • D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

Crossrefs

See A331430 for an essentially identical triangle, except with signed entries.
Columns include A000012, A002378, A033487 on the left and A000984, A002457, A002544 on the right.
Main diagonal is A006480.
Row sums are A001850. Alternating row sums are A033999.
Cf. A033282 (f-vectors type A associahedra), A108625, A080721 (f-vectors type D associahedra).
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Haskell
    a063007 n k = a063007_tabl !! n !! k
    a063007_row n = a063007_tabl !! n
    a063007_tabl = zipWith (zipWith (*)) a007318_tabl a046899_tabl
    -- Reinhard Zumkeller, Nov 18 2014
    
  • Magma
    /* As triangle: */ [[Binomial(n,k)*Binomial(n+k,k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 03 2015
  • Maple
    p := (n,x) -> orthopoly[P](n,1+2*x): seq(seq(coeff(p(n,x),x,k), k=0..n), n=0..9);
  • Mathematica
    Flatten[Table[Binomial[n, k]Binomial[n + k, k], {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Dec 24 2011 *)
    Table[CoefficientList[Hypergeometric2F1[-n, n + 1, 1, -x], x], {n, 0, 9}] // Flatten
    (* Peter Luschny, Mar 09 2018 *)
  • PARI
    {T(n, k) = local(t); if( n<0, 0, t = (x + x^2)^n; for( k=1, n, t=t'); polcoeff(t, k) / n!)} /* Michael Somos, Dec 19 2002 */
    
  • PARI
    {T(n, k) = binomial(n, k) * binomial(n+k, k)} /* Michael Somos, Sep 22 2013 */
    
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, (n+k)! / (k!^2 * (n-k)!))} /* Michael Somos, Sep 22 2013 */
    

Formula

T(n, k) = (n+k)!/(k!^2*(n-k)!) = T(n-1, k)*(n+k)/(n-k) = T(n, k-1)*(n+k)*(n-k+1)/k^2 = T(n-1, k-1)*(n+k)*(n+k-1)/k^2.
binomial(x, n)^2 = Sum_{k>=0} T(n,k) * binomial(x, n+k). - Michael Somos, May 11 2012
T(n, k) = A109983(n, k+n). - Michael Somos, Sep 22 2013
G.f.: G(t, z) = 1/sqrt(1-2*z-4*t*z+z^2). Row generating polynomials = P_n(1+2z), i.e., T(n, k) = [z^k] P_n(1+2*z), where P_n are the Legendre polynomials. - Emeric Deutsch, Apr 20 2004
Sum_{k>=0} T(n, k)*A000172(k) = Sum_{k>=0} T(n, k)^2 = A005259(n). - Philippe Deléham, Jun 08 2005
1 + z*d/dz(log(G(t,z))) = 1 + (1 + 2*t)*z + (1 + 8*t + 8*t^2)*z^2 + ... is the o.g.f. for a signed version of A127674. - Peter Bala, Sep 02 2015
If R(n,t) denotes the n-th row polynomial then x^3 * exp( Sum_{n >= 1} R(n,t)*x^n/n ) = x^3 + (1 + 2*t)*x^4 + (1 + 5*t + 5*t^2)*x^5 + (1 + 9*t + 21*t^2 + 14*t^3)*x^6 + ... is an o.g.f for A033282. - Peter Bala, Oct 19 2015
P(n,x) := 1/(1 + x)*Integral_{t = 0..x} R(n,t) dt are (modulo differences of offset) the row polynomials of A033282. - Peter Bala, Jun 23 2016
From Peter Bala, Mar 09 2018: (Start)
R(n,x) = Sum_{k = 0..n} binomial(2*k,k)*binomial(n+k,n-k)*x^k.
R(n,x) = Sum_{k = 0..n} binomial(n,k)^2*x^k*(1 + x)^(n-k).
n*R(n,x) = (1 + 2*x)*(2*n - 1)*R(n-1,x) - (n - 1)*R(n-2,x).
R(n,x) = (-1)^n*R(n,-1 - x).
R(n,x) = 1/n! * (d/dx)^n ((x^2 + x)^n). (End)
The row polynomials are R(n,x) = hypergeom([-n, n + 1], [1], -x). - Peter Luschny, Mar 09 2018
T(n,k) = C(n+1,k)*A009766(n,k). - Bob Selcoe, Jan 18 2020 (Connects this triangle with the Catalan triangle. - N. J. A. Sloane, Jan 18 2020)
If we let A(n,k) = (-1)^(n+k)*(2*k+1)*(n*(n-1)*...*(n-(k-1)))/((n+1)*...*(n+(k+1))) for n >= 0 and k = 0..n, and we consider both T(n,k) and A(n,k) as infinite lower triangular arrays, then they are inverses of one another. (Empty products are by definition 1.) See the example below. The rational numbers |A(n,k)| appear in Table II on p. 92 in Ser's (1933) book. - Petros Hadjicostas, Jul 11 2020
From Peter Bala, Nov 28 2021: (Start)
Row polynomial R(n,x) = Sum_{k >= n} binomial(k,n)^2 * x^(k-n)/(1+x)^(k+1) for x > -1/2.
R(n,x) = 1/(1 + x)^(n+1) * hypergeom([n+1, n+1], [1], x/(1 + x)).
R(n,x) = (1 + x)^n * hypergeom([-n, -n], [1], x/(1 + x)).
R(n,x) = hypergeom([(n+1)/2, -n/2], [1], -4*x*(1 + x)).
If we set R(-1,x) = 1, we can run the recurrence n*R(n,x) = (1 + 2*x)*(2*n - 1)*R(n-1,x) - (n - 1)*R(n-2,x) backwards to give R(-n,x) = R(n-1,x).
R(n,x) = [t^n] ( (1 + t)*(1 + x*(1 + t)) )^n. (End)
n*T(n,k) = (2*n-1)*T(n-1,k) + (4*n-2)*T(n-1,k-1) - (n-1)*T(n-2,k). - Fabián Pereyra, Jun 30 2022
From Peter Bala, Oct 07 2024: (Start)
n-th row polynomial R(n,x) = Sum_{k = 0..n} binomial(n, k) * x^k o (1 + x)^(n-k), where o denotes the black diamond product of power series as defined by Dukes and White (see Bala, Section 4.4, exercise 3).
Denote this triangle by T. Then T * transpose(T) = A143007, the square array of crystal ball sequences for the A_n X A_n lattices.
Let S denote the triangle ((-1)^(n+k)*T(n, k))n,k >= 0, a signed version of this triangle. Then S^(-1) * T = A007318, Pascal's triangle; it appears that T * S^(-1) = A110098.
T = A007318 * A115951. (End)

A050534 Tritriangular numbers: a(n) = binomial(binomial(n,2),2) = n*(n+1)*(n-1)*(n-2)/8.

Original entry on oeis.org

0, 0, 0, 3, 15, 45, 105, 210, 378, 630, 990, 1485, 2145, 3003, 4095, 5460, 7140, 9180, 11628, 14535, 17955, 21945, 26565, 31878, 37950, 44850, 52650, 61425, 71253, 82215, 94395, 107880, 122760, 139128, 157080, 176715, 198135, 221445, 246753, 274170, 303810, 335790
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999

Keywords

Comments

"There are n straight lines in a plane, no two of which are parallel and no three of which are concurrent. Their points of intersection being joined, show that the number of new lines drawn is (1/8)n(n-1)(n-2)(n-3)." (Schmall, 1915).
Several different versions of this sequence are possible, beginning with either one, two or three 0's.
If Y is a 3-subset of an n-set X then, for n>=6, a(n-4) is the number of (n-6)-subsets of X which have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
Number of distinct ways to select 2 pairs of objects from a set of n+1 objects, when order doesn't matter. For example, with n = 3 (4 objects), the 3 possibilities are (12)(34), (13)(24), and (14)(23). - Brian Parsonnet, Jan 03 2012
Partial sums of A027480. - J. M. Bergot, Jul 09 2013
For the set {1,2,...,n}, the sum of the 2 smallest elements of all subsets with 3 elements is a(n) (see Bulut et al. link). - Serhat Bulut, Jan 20 2015
a(n) is also the number of subgroups of S_{n+1} (the symmetric group on n+1 elements) that are isomorphic to D_4 (the dihedral group of order 8). - Geoffrey Critzer, Sep 13 2015
a(n) is the coefficient of x1^(n-3)*x2^2 in exponential Bell polynomial B_{n+1}(x1,x2,...) (number of ways to select 2 pairs among n+1 objects, see above), hence its link with A000292 and A001296 (see formula). - Cyril Damamme, Feb 26 2018
Also the number of 4-cycles in the complete graph K_{n+1}. - Eric W. Weisstein, Mar 13 2018
Number of chiral pairs of colorings of the 4 edges or vertices of a square using n or fewer colors. Each member of a chiral pair is a reflection, but not a rotation, of the other. - Robert A. Russell, Oct 20 2020

Examples

			For a(3)=3, the chiral pairs of square colorings are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. - _Robert A. Russell_, Oct 20 2020
		

References

  • Arthur T. Benjamin and Jennifer Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 154.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, Problem 1, page 72.
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5, case k=2.

Crossrefs

Cf. A000217, A000332, A033487, A107394, A034827, A210569, Second column of triangle A001498.
Cf. similar sequences listed in A241765.
Cf. (square colorings) A006528 (oriented), A002817 (unoriented), A002411 (achiral),
Row 2 of A325006 (orthoplex facets, orthotope vertices) and A337409 (orthotope edges, orthoplex ridges).
Row 4 of A293496 (cycles of n colors using k or fewer colors).

Programs

  • GAP
    List([0..40],n->3*Binomial(n+1,4)); # Muniru A Asiru, Mar 20 2018
  • Magma
    [3*Binomial(n+1, 4): n in [0..40]]; // Vincenzo Librandi, Feb 14 2015
    
  • Maple
    [seq(binomial(n+1,4)*3,n=0..40)]; # Zerinvary Lajos, Jul 18 2006
  • Mathematica
    Table[Binomial[Binomial[n, 2], 2], {n, 0, 50}] (* Stefan Steinerberger, Apr 08 2006 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 3, 15}, 40] (* Harvey P. Dale, Dec 14 2011 *)
    (* Start from Eric W. Weisstein, Mar 13 2018 *)
    Binomial[Binomial[Range[0, 20], 2], 2]
    Nest[Binomial[#, 2] &, Range[0, 20], 2]
    Nest[PolygonalNumber[# - 1] &, Range[0, 20], 2]
    CoefficientList[Series[3 x^3/(1 - x)^5, {x, 0, 20}], x]
    (* End *)
  • PARI
    a(n)=n*(n+1)*(n-1)*(n-2)/8 \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    x='x+O('x^100); concat([0, 0, 0], Vec(3*x^3/(1-x)^5)) \\ Altug Alkan, Nov 01 2015
    
  • Sage
    [(binomial(binomial(n,2),2)) for n in range(0, 39)] # Zerinvary Lajos, Nov 30 2009
    

Formula

a(n) = 3*binomial(n+1, 4) = 3*A000332(n+1).
From Vladeta Jovovic, May 03 2002: (Start)
Recurrence: a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: 3*x^3 / (1-x)^5. (End)
a(n+1) = T(T(n)) - T(n); a(n+2) = T(T(n)+n) where T is A000217. - Jon Perry, Jun 11 2003
a(n+1) = T(n)^2 - T(T(n)) where T is A000217. - Jon Perry, Jul 23 2003
a(n) = T(T(n-1)-1) where T is A000217. - Jon E. Schoenfield, Dec 14 2014
a(n) = 3*C(n, 4) + 3*C(n, 3), for n>3.
From Alexander Adamchuk, Apr 11 2006: (Start)
a(n) = (1/2)*Sum_{k=1..n} k*(k-1)*(k-2).
a(n) = A033487(n-2)/2, n>1.
a(n) = C(n-1,2)*C(n+1,2)/2, n>2. (End)
a(n) = A052762(n+1)/8. - Zerinvary Lajos, Apr 26 2007
a(n) = (4x^4 - 4x^3 - x^2 + x)/2 where x = floor(n/2)*(-1)^n for n >= 0. - William A. Tedeschi, Aug 24 2010
E.g.f.: x^3*exp(x)*(4+x)/8. - Robert Israel, Nov 01 2015
a(n) = Sum_{k=1..n} Sum_{i=1..k} (n-i-1)*(n-k). - Wesley Ivan Hurt, Sep 12 2017
a(n) = A001296(n-1) - A000292(n-1). - Cyril Damamme, Feb 26 2018
Sum_{n>=3} 1/a(n) = 4/9. - Vaclav Kotesovec, May 01 2018
a(n) = A006528(n) - A002817(n) = (A006528(n) - A002411(n)) / 2 = A002817(n) - A002411(n). - Robert A. Russell, Oct 20 2020
Sum_{n>=3} (-1)^(n+1)/a(n) = 32*log(2)/3 - 64/9. - Amiram Eldar, Jan 09 2022
a(n) = Sum_{k=1..2} (-1)^(k+1)*binomial(n,2-k)*binomial(n,2+k). - Gerry Martens, Oct 09 2022

Extensions

Additional comments from Antreas P. Hatzipolakis, May 03 2002

A034827 a(n) = 2*binomial(n,4).

Original entry on oeis.org

0, 0, 0, 0, 2, 10, 30, 70, 140, 252, 420, 660, 990, 1430, 2002, 2730, 3640, 4760, 6120, 7752, 9690, 11970, 14630, 17710, 21252, 25300, 29900, 35100, 40950, 47502, 54810, 62930, 71920, 81840, 92752, 104720, 117810, 132090, 147630, 164502, 182780
Offset: 0

Views

Author

Keywords

Comments

Also number of ways to insert two pairs of parentheses into a string of n-4 letters (allowing empty pairs of parentheses). E.g., there are 30 ways for 2 letters. Cf. A002415.
2,10,30,70, ... gives orchard crossing number of complete graph K_n. - Ralf Stephan, Mar 28 2003
If Y is a 2-subset of an n-set X then, for n>=4, a(n-1) is the number of 4-subsets and 5-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
Middle column of table on p. 6 of Feder and Garber. - Jonathan Vos Post, Apr 23 2009
Number of pairs of non-intersecting lines when each of n points around a circle is joined to every other point by straight lines. A pair of lines is considered non-intersecting if the lines do not intersect in either the interior or the boundary of a circle. - Melvin Peralta, Feb 05 2016
From a(2), convolution of the oblong numbers (A002378) with the nonnegative numbers (A001477). - Bruno Berselli, Oct 24 2016
Also the number of 3-cycles in the n-triangular honeycomb bishop graph. - Eric W. Weisstein, Aug 10 2017

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea, 1965, p. 449.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

A diagonal of A088617.
Partial sums of A007290.
Cf. A051843 (4-cycles in the triangular honeycomb bishop graph), A290775 (5-cycles), A290779 (6-cycles).

Programs

Formula

a(n) = A096338(2*n-6) = 2*A000332(n), n>2. - R. J. Mathar, Nov 08 2010
G.f.: 2*x^4/(1-x)^5. - Colin Barker, Feb 29 2012
a(n) = Sum_{k=1..n-3} ( Sum_{i=1..k} i*(2*k-n+4) ). - Wesley Ivan Hurt, Sep 26 2013
E.g.f.: x^4*exp(x)/12. - G. C. Greubel, Feb 23 2017
From Amiram Eldar, Jul 19 2022: (Start)
Sum_{n>=4} 1/a(n) = 2/3.
Sum_{n>=4} (-1)^n/a(n) = 16*log(2) - 32/3. (End)

A046816 Pascal's tetrahedron: entries in 3-dimensional version of Pascal triangle, or trinomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 3, 3, 3, 6, 3, 1, 3, 3, 1, 1, 4, 4, 6, 12, 6, 4, 12, 12, 4, 1, 4, 6, 4, 1, 1, 5, 5, 10, 20, 10, 10, 30, 30, 10, 5, 20, 30, 20, 5, 1, 5, 10, 10, 5, 1, 1, 6, 6, 15, 30, 15, 20, 60, 60, 20, 15, 60, 90, 60, 15, 6, 30, 60, 60, 30, 6, 1, 6, 15, 20, 15, 6, 1
Offset: 0

Views

Author

Keywords

Comments

Greatest numbers in each 2D triangle form A022916 (multinomial coefficient n!/([n/3]![(n+1)/3]![(n+2)/3]!).) 2D triangle sums are powers of 3. - Gerald McGarvey, Aug 15 2004
T(n,j,k) is the number of lattice paths from (0,0,0) to (n,j,k) with steps (1,0,0), (1,1,0) and (1,1,1). - Dimitri Boscainos, Aug 16 2015
T(n,j,k) is the number of k-dimensional hyperfaces in an n-dimensional hypercube at an edge distance of j from a given vertex. For example, the number of 2D faces in a 3D cube touching a given vertex is T(3,0,2) = 3, and the number of 3D cube 1D edges at a separation of 1 edge from a given vertex is T(3,1,1) = 6. - Eitan Y. Levine, Jul 22 2023
The sums along vertical lines within each slice (when oriented as in the example) give A027907. See "vertical sums" link. - Eitan Y. Levine, May 17 2023
Numbers of ways to classify n circles black, red, or green; classified first by how many circles there are altogether, then by how many are of each color. - J. Lowell, Nov 06 2024

Examples

			The first few slices of the tetrahedron (or pyramid) are:
  1
-----------------
   1
  1 1
-----------------
    1
   2 2
  1 2 1
-----------------
     1 .... Here is the third slice of the pyramid
    3 3
   3 6 3
  1 3 3 1
----------------
...
		

References

  • Marco Costantini: Metodo per elevare qualsiasi trinomio a qualsiasi potenza. Archimede, rivista per gli insegnanti e i cultori di matematiche pure e applicate, anno XXXVIII ottobre-dicembre 1986, pp. 205-209. [Vincenzo Librandi, Jul 19 2009]

Crossrefs

Entry [3, 2] in each slice gives A002378, entry [4, 3] in each slice gives A027480, entry [5, 2] in each slice gives A033488, entry [5, 3] in each slice gives A033487.
See A268240 for this read mod 2.
Cf. A013609 (row sums).

Programs

  • Haskell
    a046816 n = a046816_list !! n
    a046816_list = concat $ concat $ iterate ([[1],[1,1]] *) [1]
    instance Num a => Num [a] where
       fromInteger k = [fromInteger k]
       (p:ps) + (q:qs) = p + q : ps + qs
       ps + qs         = ps ++ qs
       (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
        *                = []
    -- Reinhard Zumkeller, Apr 02 2011
    
  • Maple
    p:= proc(i, j, k) option remember;
          if k<0 or i<0 or i>k or j<0 or j>i then 0
        elif {i, j, k}={0} then 1
        else p(i, j, k-1) +p(i-1, j, k-1) +p(i-1, j-1, k-1)
          fi
        end:
    seq(seq(seq(p(i, j, k), j=0..i), i=0..k), k=0..10);
    #  Alois P. Heinz, Apr 03 2011
  • Mathematica
    p[i_, j_, k_] := p[i, j, k] = Which[ k<0 || i<0 || i>k || j<0 || j>i, 0, {i, j, k} == {0, 0, 0}, 1, True, p[i, j, k-1] + p[i-1, j, k-1] + p[i-1, j-1, k-1]]; Table[p[i, j, k], {k, 0, 6}, {i, 0, k}, {j, 0, i}] // Flatten (* Jean-François Alcover, Dec 31 2012, translated from Alois P. Heinz's Maple program *)
    (* or *)
    Flatten[CoefficientList[CoefficientList[CoefficientList[Series[1/(1-x-x*y-x*y*z), {x, 0, 6}], x], y],z]] (* Georg Fischer, May 29 2019 *)
  • Python
    from math import comb as C
    def T(n, j, k): return C(n, j) * C(n-j, k)
    print([T(n, r-c, c) for n in range(7) for r in range(n+1) for c in range(r+1)]) # Michael S. Branicky, Dec 26 2024

Formula

Coefficients of x, y, z in (x+y+z)^n: Let T'(n; i,j,k) := T(n, j,k) where i = n-(j+k). Then T'(n+1; i,j,k) = T'(n; i-1,j,k)+T'(n; i,j-1,k)+T'(n; i,j,k-1), T'(n; i,j,-1) := 0, T'(n; i,j,k) is invariant under permutations of (i,j,k); T'(0, 0, 0)=1.
T'(n; i,j,k) = n!/(i!*j!*k!) and (x+y+z)^n = Sum_{i+j+k=n; 0 <= i,j,k <= n} T'(n; i,j,k)*x^i*y^j*z^k. Hence Sum_{i+j+k=n; 0 <= i,j,k <= n} T'(n; i,j,k) = 3^n. - Gregory Gerard Wojnar, Oct 08 2020
G.f.: 1/(1-x-x*y-x*y*z). - Georg Fischer, May 29 2019
T(n,j,k) = C(n,j) * C(n-j,k), where C(a,b) are the binomial coefficients, elements of A007318. In particular, T(n,j,0) = C(n,j). - Eitan Y. Levine, Jul 22 2023
(-1)^n * Sum_{i=ceiling(n/k)..n} (-1)^i * T(i*k,n-i,i) = k^n, for n,k > 0. - Eitan Y. Levine, Aug 31 2023

A051925 a(n) = n*(2*n+5)*(n-1)/6.

Original entry on oeis.org

0, 0, 3, 11, 26, 50, 85, 133, 196, 276, 375, 495, 638, 806, 1001, 1225, 1480, 1768, 2091, 2451, 2850, 3290, 3773, 4301, 4876, 5500, 6175, 6903, 7686, 8526, 9425, 10385, 11408, 12496, 13651, 14875, 16170, 17538, 18981, 20501, 22100, 23780
Offset: 0

Views

Author

N. J. A. Sloane, Dec 19 1999

Keywords

Comments

Related to variance of number of inversions of a random permutation of n letters.
Zero followed by partial sums of A005563. - Klaus Brockhaus, Oct 17 2008
a(n)/12 is the variance of the number of inversions of a random permutation of n letters. See evidence in Mathematica code below. - Geoffrey Critzer, May 15 2010
The sequence is related to A033487 by A033487(n-1) = n*a(n) - Sum_{i=0..n-1} a(i) = n*(n+1)*(n+2)*(n+3)/4. - Bruno Berselli, Apr 04 2012
Deleting the two 0's leaves row 2 of the convolution array A213750. - Clark Kimberling, Jun 20 2012
For n>=4, a(n-2) is the number of permutations of 1,2...,n with the distribution of up (1) - down (0) elements 0...0110 (the first n-4 zeros), or, the same, a(n-2) is up-down coefficient {n,6} (see comment in A060351). - Vladimir Shevelev, Feb 15 2014
Minimum sum of the bottom row of a triangular array A filled with the integers [0..binomial(n, 2) - 1] that obeys the rule A[i, j] + 1 <= A[i+1, j] and A[i, j] + 1 <= A[i, j-1]. - C.S. Elder, Oct 13 2023
The preceding statement can be extended: a(n) is the minimum sum of the main antidiagonal of a n X n square array A filled eith the integers [0..n^2-1] that is increasing on each row from left to right, and on each column from top to bottom. - Yifan Xie, Dec 19 2024

References

  • V. N. Sachkov, Probabilistic Methods in Combinatorial Analysis, Cambridge, 1997.

Crossrefs

Programs

  • Magma
    I:=[0, 0, 3, 11]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Apr 27 2012
  • Mathematica
    f[{x_, y_}] := 2 y - x^2; Table[f[Coefficient[ Series[Product[Sum[Exp[i t], {i, 0, m}], {m, 1, n - 1}]/n!, {t, 0, 2}], t, {1, 2}]], {n, 0, 41}]*12 (* Geoffrey Critzer, May 15 2010 *)
    CoefficientList[Series[x^2*(3-x)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Apr 27 2012 *)
    LinearRecurrence[{4,-6,4,-1},{0,0,3,11},50] (* Harvey P. Dale, Sep 07 2024 *)
  • PARI
    {print1(a=0, ","); for(n=0, 42, print1(a=a+(n+1)^2-1, ","))} \\ Klaus Brockhaus, Oct 17 2008
    

Formula

a(n) = A000330(n) - n. - Andrey Kostenko, Nov 30 2008
G.f.: x^2*(3-x)/(1-x)^4. - Colin Barker, Apr 04 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Apr 27 2012
E.g.f.: (x^2/6)*(2*x + 9)*exp(x). - G. C. Greubel, Jul 19 2017
From Amiram Eldar, Nov 10 2023: (Start)
Sum_{n>=2} 1/a(n) = 62/1225 + 24*log(2)/35.
Sum_{n>=2} (-1)^n/a(n) = 6*Pi/35 + 72*log(2)/35 - 2078/1225. (End)

A062196 Triangle read by rows, T(n, k) = binomial(n, k)*binomial(n + 2, k).

Original entry on oeis.org

1, 1, 3, 1, 8, 6, 1, 15, 30, 10, 1, 24, 90, 80, 15, 1, 35, 210, 350, 175, 21, 1, 48, 420, 1120, 1050, 336, 28, 1, 63, 756, 2940, 4410, 2646, 588, 36, 1, 80, 1260, 6720, 14700, 14112, 5880, 960, 45, 1, 99, 1980, 13860, 41580, 58212, 38808, 11880, 1485, 55
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

Also the coefficient triangle of certain polynomials N(2; m,x) := Sum_{k=0..m} T(m,k)*x^k. The e.g.f. of the m-th (unsigned) column sequence without leading zeros of the generalized (a=2) Laguerre triangle L(2; n+m,m) = A062139(n+m,m), n >= 0, is N(2; m,x)/(1-x)^(3+2*m), with the row polynomials N(2; m,x).

Examples

			Triangle starts:
  n\k 0...1.....2......3..... 4.....;
  [0] 1;
  [1] 1,  3;
  [2] 1,  8,    6;
  [3] 1, 15,   30,    10;
  [4] 1, 24,   90,    80,    15;
  [5] 1, 35,  210,   350,   175,    21;
  [6] 1, 48,  420,  1120,  1050,   336,    28;
  [7] 1, 63,  756,  2940,  4410,  2646,   588,    36;
  [8] 1, 80, 1260,  6720, 14700, 14112,  5880,   960,   45;
  [9] 1, 99, 1980, 13860, 41580, 58212, 38808, 11880, 1485, 55.
		

Crossrefs

Family of polynomials (see A062145): A008459 (c=1), A132813 (c=2), this sequence (c=3), A062145 (c=4), A062264 (c=5), A062190 (c=6).
Sums include: A001791 (row), (-1)^n*A089849(n+1) (alternating sign row).
Diagonals: A000217 (k=n), A002417 (k=n-1), A001297 (k=n-2), A105946 (k=n-3), A105947 (k=n-4), A105948 (k=n-5), A107319 (k=n-6).
Columns: A005563 (k=1), A033487 (k=2), A027790 (k=3), A107395 (k=4), A107396 (k=5), A107397 (k=6), A107398 (k=7), A107399 (k=8).

Programs

  • Magma
    A062196:= func;
    [A062196(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 21 2025
    
  • Maple
    T := (n, k) -> binomial(n, k)*binomial(n + 2, k);
    seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, Sep 30 2021
  • Mathematica
    A062196[n_, k_]:= Binomial[n, k]*Binomial[n+2, k];
    Table[A062196[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 21 2025 *)
  • SageMath
    def A062196(n,k): return binomial(n,k)*binomial(n+2,k)
    print(flatten([[A062196(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Feb 21 2025

Formula

T(m, k) = [x^k] N(2; m, x), where N(2; m, x) = ((1-x)^(3+2*m))*(d^m/dx^m)(x^m/(m!*(1-x)^(m+3))).
N(2; m, x) = Sum_{j=0..m} ((binomial(m, j)*(2*m+2-j)!/((m+2)!*(m-j)!)*(x^(m-j)))*(1-x)^j).
T(n,m) = binomial(n, m)*(binomial(n+1, m) + binomial(n+1, m-1)). - Vladimir Kruchinin, Apr 06 2018
From G. C. Greubel, Feb 21 2025: (Start)
T(2*n, n) = (n+1)^2*A000108(n)*A000108(n+1).
T(2*n-1, n) = (4*n^2 - 1)*A000108(n-1)*A000108(n), n >= 1.
T(2*n+1, n) = (1/2)*binomial(n+2,2)*A000108(n+1)*A000108(n+2). (End)

Extensions

New name by Peter Luschny, Sep 30 2021

A085780 Numbers that are a product of 2 triangular numbers.

Original entry on oeis.org

0, 1, 3, 6, 9, 10, 15, 18, 21, 28, 30, 36, 45, 55, 60, 63, 66, 78, 84, 90, 91, 100, 105, 108, 120, 126, 135, 136, 150, 153, 165, 168, 171, 190, 198, 210, 216, 225, 231, 234, 253, 270, 273, 276, 280, 300, 315, 325, 330, 351, 360, 378, 396, 406, 408, 420, 435, 441
Offset: 1

Views

Author

Jon Perry, Jul 23 2003

Keywords

Comments

Is there a fast algorithm for detecting these numbers? - Charles R Greathouse IV, Jan 26 2013
The number of rectangles with positive width 1<=w<=i and positive height 1<=h<=j contained in an i*j rectangle is t(i)*t(j), where t(k)=A000217(k), see A096948. - Dimitri Boscainos, Aug 27 2015

Examples

			18 = 3*6 = t(2)*t(3) is a product of two triangular numbers and therefore in the sequence.
		

Crossrefs

Cf. A000217, A085782, A068143, A000537 (subsequence), A006011 (subsequence), A033487 (subsequence), A188630 (subsequence).
Cf. A072389 (this times 4).

Programs

  • Maple
    isA085780 := proc(n)
         local d;
         for d in numtheory[divisors](n) do
            if d^2 > n then
                return false;
            end if;
            if isA000217(d) then
                if isA000217(n/d) then
                    return true;
                end if;
            end if;
        end do:
        return false;
    end proc:
    for n from 1 to 1000 do
        if isA085780(n) then
            printf("%d,",n) ;
        end if ;
    end do: # R. J. Mathar, Nov 29 2015
  • Mathematica
    t1 = Table[n (n+1)/2, {n, 0, 100}];Select[Union[Flatten[Outer[Times, t1, t1]]], # <= t1[[-1]] &] (* T. D. Noe, Jun 04 2012 *)
  • PARI
    A003056(n)=(sqrtint(8*n+1)-1)\2
    list(lim)=my(v=List([0]),t); for(a=1, A003056(lim\1), t=a*(a+1)/2; for(b=a, A003056(lim\t), listput(v,t*b*(b+1)/2))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jan 26 2013
    
  • Python
    from itertools import count, islice
    from sympy import divisors, integer_nthroot
    def A085780_gen(startvalue=0): # generator of terms
        if startvalue <= 0:
            yield 0
        for n in count(max(startvalue,1)):
            for d in divisors(m:=n<<2):
                if d**2 > m:
                    break
                if integer_nthroot((d<<2)+1,2)[1] and integer_nthroot((m//d<<2)+1,2)[1]:
                    yield n
                    break
    A085780_list = list(islice(A085780_gen(),10)) # Chai Wah Wu, Aug 28 2022

Formula

Conjecture: There are about sqrt(x)*log(x) terms up to x. - Charles R Greathouse IV, Jul 11 2024

Extensions

More terms from Max Alekseyev and Jon E. Schoenfield, Sep 04 2009

A011915 a(n) = floor(n*(n-1)*(n-2)*(n-3)/5).

Original entry on oeis.org

0, 0, 0, 0, 4, 24, 72, 168, 336, 604, 1008, 1584, 2376, 3432, 4804, 6552, 8736, 11424, 14688, 18604, 23256, 28728, 35112, 42504, 51004, 60720, 71760, 84240, 98280, 114004, 131544, 151032, 172608, 196416, 222604, 251328, 282744, 317016, 354312
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form floor(24*binomial(n,4)/m): A052762 (m=1), A033486 (m=2), A162668 (m=3), A033487 (m=4), this sequence (m=5), A033488 (m=6), A011917 (m=7), A050534 (m=8), A011919 (m=9), 2*A011930 (m=10), A011921 (m=11), A034827 (m=12), A011923 (m=13), A011924 (m=14), A011925 (m=15), A011926 (m=16), A011927 (m=17), A011928 (m=18), A011929 (m=19), A011930 (m=20), A011931 (m=21), A011932 (m=22), A011933 (m=23), A000332 (m=24), A011935 (m=25),A011936 (m=26), A011937 (m=27), A011938 (m=28), A011939 (m=29), A011940 (m=30), A011941 (m=31), A011942 (m=32), A011795 (m=120).

Programs

  • Magma
    [Floor(n*(n-1)*(n-2)*(n-3)/5): n in [0..60]]; // Vincenzo Librandi, Jun 19 2012
    
  • Mathematica
    Table[Floor[n(n-1)(n-2)(n-3)/5], {n,60}] (* Stefan Steinerberger, Apr 10 2006 *)
    CoefficientList[Series[4*x^4*(1+2*x+2*x^3+x^4)/((1-x)^4*(1+x^5)),{x,0,60}],x] (* Vincenzo Librandi, Jun 19 2012 *)
  • SageMath
    [24*binomial(n,4)//5 for n in range(61)] # G. C. Greubel, Oct 20 2024

Formula

a(n) = +4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +a(n-5) -4*a(n-6) +6*a(n-7) -4*a(n-8) +a(n-9).
G.f.: 4*x^4*(1+2*x+2*x^3+x^4) / ( (1-x)^5*(1+x+x^2+x^3+x^4) ). - R. J. Mathar, Apr 15 2010
a(n) = 4*A011930(n). - G. C. Greubel, Oct 20 2024

Extensions

More terms from Stefan Steinerberger, Apr 10 2006
Zero added in front by R. J. Mathar, Apr 15 2010
Showing 1-10 of 26 results. Next