cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A011795 a(n) = floor(C(n,4)/5).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 7, 14, 25, 42, 66, 99, 143, 200, 273, 364, 476, 612, 775, 969, 1197, 1463, 1771, 2125, 2530, 2990, 3510, 4095, 4750, 5481, 6293, 7192, 8184, 9275, 10472, 11781, 13209, 14763, 16450, 18278, 20254, 22386, 24682, 27150, 29799, 32637, 35673, 38916, 42375, 46060, 49980, 54145, 58565, 63250, 68211, 73458, 79002, 84854, 91025, 97527, 104371
Offset: 0

Views

Author

Keywords

Comments

a(n-1) = number of aperiodic necklaces (Lyndon words) with 5 black beads and n-5 white beads.

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 147.

Crossrefs

Same as A051170(n+1).
A column of triangle A011847.

Programs

  • Magma
    [Floor(Binomial(n+1,5)/(n+1)): n in [0..70]]; // Vincenzo Librandi Jun 19 2012
    
  • Maple
    seq(floor(binomial(n,4)/5), n=0.. 70); # Zerinvary Lajos, Jan 12 2009
  • Mathematica
    CoefficientList[Series[x^5(1+x^3)/((1-x)^3(1-x^2)(1-x^5)),{x,0,70}],x] (* Vincenzo Librandi, Jun 19 2012 *)
    CoefficientList[Series[x^4/5 (1/(1-x)^5-1/(1- x^5)),{x,0,70}],x] (* Herbert Kociemba, Oct 16 2016 *)
  • PARI
    a(n)=binomial(n,4)\5 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [binomial(n,4)//5 for n in range(71)] # G. C. Greubel, Oct 20 2024

Formula

G.f.: x^5*(1+x^3)/((1-x)^3*(1-x^2)*(1-x^5)) = x^5*(1-x+x^2)/((1-x)^5*(1+x+x^2+x^3+x^4)).
a(n) = floor(binomial(n+1,5)/(n+1)). - Gary Detlefs, Nov 23 2011

A011932 a(n) = floor( n*(n-1)*(n-2)*(n-3)/22 ).

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 16, 38, 76, 137, 229, 360, 540, 780, 1092, 1489, 1985, 2596, 3338, 4228, 5285, 6529, 7980, 9660, 11592, 13800, 16309, 19145, 22336, 25910, 29896, 34325, 39229, 44640, 50592, 57120, 64260, 72049, 80525, 89728, 99698, 110476, 122105, 134629, 148092, 162540, 178020, 194580, 212269, 231137
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A011915.

Programs

  • Magma
    [Floor(12*Binomial(n,4)/11): n in [0..80]]; // G. C. Greubel, Nov 03 2024
    
  • Mathematica
    Table[Floor[(n(n-1)(n-2)(n-3))/22],{n,0,60}] (* Harvey P. Dale, Nov 25 2017 *)
  • PARI
    a(n)=n*(n-1)*(n-2)*(n-3)\22 \\ Charles R Greathouse IV, Oct 18 2022
    
  • SageMath
    [12*binomial(n,4)//11 for n in range(81)] # G. C. Greubel, Nov 03 2024

Formula

From Chai Wah Wu, Aug 02 2020: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-11) - 4*a(n-12) + 6*a(n-13) - 4*a(n-14) + a(n-15) for n > 14.
G.f.: x^4*(1 + x + 2*x^2 + x^4 + 2*x^5 + x^6 + 2*x^8 + x^9 + x^10)/((1-x)^4*(1-x^11)). (End)

Extensions

More terms added by G. C. Greubel, Nov 03 2024

A011933 a(n) = floor( n*(n-1)*(n-2)*(n-3)/23 ).

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 15, 36, 73, 131, 219, 344, 516, 746, 1044, 1424, 1899, 2483, 3193, 4044, 5055, 6245, 7633, 9240, 11088, 13200, 15600, 18313, 21365, 24783, 28596, 32833, 37523, 42699, 48392, 54636, 61466, 68916, 77024, 85827, 95363, 105673, 116796, 128775, 141653, 155473, 170280, 186120, 203040, 221088
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(24*Binomial(n,4)/23): n in [0..80]]; // G. C. Greubel, Nov 03 2024
    
  • Mathematica
    Table[Floor[(n(n-1)(n-2)(n-3))/23],{n,0,60}] (* Harvey P. Dale, Jun 22 2011 *)
  • PARI
    a(n) = n*(n-1)*(n-2)*(n-3)\23; \\ Michel Marcus, Jun 14 2017
    
  • SageMath
    [24*binomial(n,4)//23 for n in range(81)] # G. C. Greubel, Nov 03 2024

Formula

From Chai Wah Wu, Aug 02 2020: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-23) - 4*a(n-24) + 6*a(n-25) - 4*a(n-26) + a(n-27) for n > 26.
G.f.: x^4*(1+x^2)*(1 + x + x^3 - x^5 + 4*x^6 - x^7 - x^8 + 2*x^9 + 2*x^11 - x^12 - x^13 + 4*x^14 - x^15 + x^17 + x^19 + x^20)/((1-x)^4*(1-x^23)). (End)

Extensions

More terms added by G. C. Greubel, Nov 03 2024

A011935 a(n) = floor( n*(n-1)*(n-2)*(n-3)/25 ).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 14, 33, 67, 120, 201, 316, 475, 686, 960, 1310, 1747, 2284, 2937, 3720, 4651, 5745, 7022, 8500, 10200, 12144, 14352, 16848, 19656, 22800, 26308, 30206, 34521, 39283, 44520, 50265, 56548, 63403, 70862, 78960, 87734, 97219, 107452, 118473
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A011915.

Programs

  • Magma
    [Floor(24*Binomial(n,4)/25): n in [0..80]]; // G. C. Greubel, Nov 02 2024
    
  • Mathematica
    Floor[24*Binomial[Range[0,80], 4]/25] (* G. C. Greubel, Nov 02 2024 *)
    Table[Floor[Times@@(n-Range[0,3])/25],{n,0,40}]  (* or *) LinearRecurrence[{4,-6,4,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-4,6,-4,1},{0,0,0,0,0,4,14,33,67,120,201,316,475,686,960,1310,1747,2284,2937,3720,4651,5745,7022,8500,10200,12144,14352,16848,19656},40] (* Harvey P. Dale, Jan 18 2025 *)
  • SageMath
    [24*binomial(n,4)//25 for n in range(81)] # G. C. Greubel, Nov 02 2024

Formula

a(n) = +4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +a(n-25) -4*a(n-26) +6*a(n-27) -4*a(n-28) +a(n-29). - R. J. Mathar, Apr 15 2010
G.f.: x^5*(4 -2*x +x^2 +3*x^3 -2*x^4 +5*x^5 -3*x^6 +4*x^7 -2*x^8 +3*x^9 +2*x^10 -2*x^11 +2*x^12 +3*x^13 -2*x^14 +4*x^15 -3*x^16 +5*x^17 -2*x^18 +3*x^19 +x^20 -2*x^21 +4*x^22)/((1-x)^4*(1-x^25)). - G. C. Greubel, Nov 02 2024

A011936 a(n) = floor( n*(n-1)*(n-2)*(n-3)/26 ).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 13, 32, 64, 116, 193, 304, 456, 660, 924, 1260, 1680, 2196, 2824, 3577, 4472, 5524, 6752, 8173, 9808, 11676, 13800, 16200, 18900, 21924, 25296, 29044, 33193, 37772, 42808, 48332, 54373, 60964, 68136, 75924, 84360, 93480, 103320, 113916, 125308, 137533, 150632, 164644, 179612, 195577
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A011915.

Programs

  • Magma
    [Floor(12*Binomial(n,4)/13): n in [0..80]]; // G. C. Greubel, Oct 29 2024
    
  • Maple
    A011936:=n->floor(n*(n-1)*(n-2)*(n-3)/26): seq(A011936(n), n=0..100); # Wesley Ivan Hurt, Feb 03 2017
  • Mathematica
    Floor[12*Binomial[Range[0,80], 4]/13] (* G. C. Greubel, Oct 29 2024 *)
  • SageMath
    [12*binomial(n,4)//13 for n in range(81)] # G. C. Greubel, Oct 29 2024

Formula

From Chai Wah Wu, Aug 02 2020: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-13) - 4*a(n-14) + 6*a(n-15) - 4*a(n-16) + a(n-17) for n > 16.
G.f.: x^5*(4 -3*x +4*x^2 -2*x^3 +4*x^4 -2*x^5 +4*x^6 -2*x^7 +4*x^8 -3*x^9 +4*x^10)/((1-x)^4*(1-x^13)). (End)

Extensions

More terms added by G. C. Greubel, Oct 29 2024

A011937 a(n) = floor( n*(n-1)*(n-2)*(n-3)/27 ).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 13, 31, 62, 112, 186, 293, 440, 635, 889, 1213, 1617, 2115, 2720, 3445, 4306, 5320, 6502, 7871, 9445, 11244, 13288, 15600, 18200, 21112, 24360, 27968, 31964, 36373, 41223, 46542, 52360, 58706, 65613, 73112, 81235, 90017, 99493, 109697, 120667, 132440, 145053, 158546, 172960, 188334
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A011915.

Programs

  • Magma
    [Floor(8*Binomial(n,4)/9): n in [0..80]]; // G. C. Greubel, Oct 29 2024
    
  • Mathematica
    Table[Floor[n (n-1)(n-2)(n-3)/27], {n, 0, 60}] (* Wesley Ivan Hurt, Jan 02 2024 *)
  • PARI
    a(n)=n*(n-1)*(n-2)*(n-3)\27 \\ Charles R Greathouse IV, Oct 18 2022
    
  • SageMath
    [8*binomial(n,4)//9 for n in range(81)] # G. C. Greubel, Oct 29 2024

Formula

From Chai Wah Wu, Aug 02 2020: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-27) - 4*a(n-28) + 6*a(n-29) - 4*a(n-30) + a(n-31) for n > 30.
G.f.: x^5*(4 -3*x +3*x^2 +2*x^4 -x^5 +4*x^6 -2*x^7 +x^8 +3*x^9 -x^11 +4*x^12 -x^13 +3*x^15 +x^16 -2*x^17 +4*x^18 -x^19 +2*x^20 +3*x^22 -3*x^23 +4*x^24)/((1-x)^5*(1 +x +x^2)*(1 +x^3 +x^6)*(1 +x^9 +x^18)). (End)

Extensions

More terms added by G. C. Greubel, Oct 29 2024

A011938 a(n) = floor( n*(n-1)*(n-2)*(n-3)/28 ).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 12, 30, 60, 108, 180, 282, 424, 612, 858, 1170, 1560, 2040, 2622, 3322, 4152, 5130, 6270, 7590, 9108, 10842, 12814, 15042, 17550, 20358, 23490, 26970, 30822, 35074, 39750, 44880, 50490, 56610, 63270, 70500, 78334, 86802, 95940, 105780
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A011915.

Programs

  • Magma
    [Floor(n*(n-1)*(n-2)*(n-3)/28): n in [0..50]]; // Vincenzo Librandi, May 27 2016
    
  • Mathematica
    Table[Floor[n (n-1)(n-2)(n-3)/28], {n, 0, 50}] (* Vincenzo Librandi, May 27 2016 *)
    LinearRecurrence[{4,-6,4,-1,0,0,1,-4,6,-4,1},{0,0,0,0,0,4,12,30,60,108,180}, 50] (* Harvey P. Dale, Aug 10 2024 *)
  • PARI
    concat(vector(5), Vec(2*x^5*(2-2*x+3*x^2-2*x^3+2*x^4)/((1-x)^5*(1+x+x^2+x^3+x^4+x^5+x^6)) + O(x^50))) \\ Colin Barker, May 25 2016
    
  • SageMath
    [6*binomial(n,4)//7 for n in range(61)] # G. C. Greubel, Oct 27 2024

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-7) - 4*a(n-8) + 6*a(n-9) - 4*a(n-10) + a(n-11). - Chai Wah Wu, May 25 2016
G.f.: 2*x^5*(2-2*x+3*x^2-2*x^3+2*x^4) / ((1-x)^5*(1+x+x^2+x^3+x^4+x^5+x^6)). - Colin Barker, May 25 2016

A011939 a(n) = floor( n*(n-1)*(n-2)*(n-3)/29 ).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 12, 28, 57, 104, 173, 273, 409, 591, 828, 1129, 1506, 1969, 2532, 3207, 4009, 4953, 6053, 7328, 8793, 10468, 12372, 14524, 16944, 19656, 22680, 26040, 29760, 33864, 38380, 43332, 48748, 54657, 61088, 68069, 75633, 83809, 92631, 102132, 112345, 123306, 135049, 147612, 161031, 175345
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A011915.

Programs

  • Magma
    [Floor(24*Binomial(n,4)/29): n in [0..60]]; // G. C. Greubel, Oct 27 2024
    
  • Mathematica
    Table[Floor[Times@@(n-Range[0,3])/29],{n,0,60}] (* or *) LinearRecurrence[{4,-6,4,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-4,6,-4,1},{0,0,0,0,0,4,12,28,57,104,173,273,409,591,828,1129,1506,1969,2532,3207,4009,4953,6053,7328,8793,10468,12372,14524,16944,19656,22680,26040,29760},60] (* Harvey P. Dale, Jun 09 2024 *)
    Floor[24*Binomial[Range[0,60], 4]/29] (* G. C. Greubel, Oct 27 2024 *)
  • PARI
    a(n)=n*(n-1)*(n-2)*(n-3)\29 \\ Charles R Greathouse IV, Oct 18 2022
    
  • SageMath
    [24*binomial(n,4)//29 for n in range(61)] # G. C. Greubel, Oct 27 2024

Formula

From Chai Wah Wu, Aug 02 2020: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-29) - 4*a(n-30) + 6*a(n-31) - 4*a(n-32) + a(n-33) for n > 32.
G.f.: x^5*(4 -4*x +4*x^2 +x^3 -x^5 +5*x^6 -4*x^7 +5*x^8 -x^9 +3*x^11 -2*x^12 +4*x^13 -2*x^14 +3*x^15 -x^17 +5*x^18 -4*x^19 +5*x^20 -x^21 +x^23 +4*x^24 -4*x^25 +4*x^26)/((1-x)^4*(1-x^29)). (End)

Extensions

More terms added by G. C. Greubel, Oct 27 2024

A011940 a(n) = floor(n*(n-1)*(n-2)*(n-3)/30).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 12, 28, 56, 100, 168, 264, 396, 572, 800, 1092, 1456, 1904, 2448, 3100, 3876, 4788, 5852, 7084, 8500, 10120, 11960, 14040, 16380, 19000, 21924, 25172, 28768, 32736, 37100, 41888, 47124, 52836, 59052, 65800, 73112, 81016, 89544, 98728, 108600, 119196, 130548, 142692, 155664, 169500
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n*(n-1)*(n-2)*(n-3)/30): n in [0..60]]; // Vincenzo Librandi, Jun 19 2012
    
  • Mathematica
    CoefficientList[Series[4*x^5*(1-x+x^2)/((1-x)^4*(1-x^5)),{x,0,60}],x] (* Vincenzo Librandi, Jun 19 2012 *)
    LinearRecurrence[{4,-6,4,-1,1,-4,6,-4,1},{0,0,0,0,0,4,12,28,56},60] (* Harvey P. Dale, Nov 13 2017 *)
    Floor[4*Binomial[Range[0,60], 4]/5] (* G. C. Greubel, Oct 27 2024 *)
  • SageMath
    [4*binomial(n,4)//5 for n in range(61)] # G. C. Greubel, Oct 27 2024

Formula

a(n) = 4 * A011795(n).
From R. J. Mathar, Apr 15 2010: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-5) - 4*a(n-6) + 6*a(n-7) - 4*a(n-8) + a(n-9).
G.f.: 4*x^5*(1-x+x^2) / ((1-x)^5*(1+x+x^2+x^3+x^4) ). (End)

A011941 a(n) = floor(n*(n-1)*(n-2)*(n-3)/31).

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 11, 27, 54, 97, 162, 255, 383, 553, 774, 1056, 1409, 1842, 2369, 3000, 3750, 4633, 5663, 6855, 8226, 9793, 11574, 13587, 15851, 18387, 21216, 24360, 27840, 31680, 35904, 40536, 45603, 51131, 57147, 63678, 70753, 78402, 86655, 95543
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A011915.

Programs

  • Magma
    [Floor(24*Binomial(n,4)/31): n in [0..60]]; // G. C. Greubel, Oct 26 2024
    
  • Maple
    f:= n -> floor(n*(n-1)*(n-2)*(n-3)/31):
    map(f, [$0..100]); # Robert Israel, Feb 12 2017
  • Mathematica
    Floor[24*Binomial[Range[0, 60], 4]/31] (* G. C. Greubel, Oct 26 2024 *)
  • PARI
    a(n) = n*(n-1)*(n-2)*(n-3)\31; \\ Altug Alkan, Feb 12 2017
    
  • SageMath
    [24*binomial(n,4)//31 for n in range(61)] # G. C. Greubel, Oct 26 2024

Formula

G.f.: (3-x+x^2+2*x^4+x^5+x^7+2*x^9+x^10-x^12+5*x^13-4*x^14+5*x^15-x^16+x^18 +2*x^19+x^21+x^23+2*x^24+x^26-x^27+3*x^28)*x^5/((1-x)^4*(1-x^31)). - Robert Israel, Feb 12 2017
Showing 1-10 of 11 results. Next