cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A002415 4-dimensional pyramidal numbers: a(n) = n^2*(n^2-1)/12.

Original entry on oeis.org

0, 0, 1, 6, 20, 50, 105, 196, 336, 540, 825, 1210, 1716, 2366, 3185, 4200, 5440, 6936, 8721, 10830, 13300, 16170, 19481, 23276, 27600, 32500, 38025, 44226, 51156, 58870, 67425, 76880, 87296, 98736, 111265, 124950, 139860, 156066, 173641, 192660, 213200, 235340
Offset: 0

Views

Author

Keywords

Comments

Also number of ways to legally insert two pairs of parentheses into a string of m := n-1 letters. (There are initially 2C(m+4,4) (A034827) ways to insert the parentheses, but we must subtract 2(m+1) for illegal clumps of 4 parentheses, 2m(m+1) for clumps of 3 parentheses, C(m+1,2) for 2 clumps of 2 parentheses and (m-1)C(m+1,2) for 1 clump of 2 parentheses, giving m(m+1)^2(m+2)/12 = n^2*(n^2-1)/12.) See also A000217.
E.g., for n=2 there are 6 ways: ((a))b, ((a)b), ((ab)), (a)(b), (a(b)), a((b)).
Let M_n denote the n X n matrix M_n(i,j)=(i+j); then the characteristic polynomial of M_n is x^(n-2) * (x^2-A002378(n)*x - a(n)). - Benoit Cloitre, Nov 09 2002
Let M_n denote the n X n matrix M_n(i,j)=(i-j); then the characteristic polynomial of M_n is x^n + a(n)x^(n-2). - Michael Somos, Nov 14 2002 [See A114327 for the infinite matrix M in triangular form. - Wolfdieter Lang, Feb 05 2018]
Number of permutations of [n] which avoid the pattern 132 and have exactly 2 descents. - Mike Zabrocki, Aug 26 2004
Number of tilings of a <2,n,2> hexagon.
a(n) is the number of squares of side length at least 1 having vertices at the points of an n X n unit grid of points (the vertices of an n-1 X n-1 chessboard). [For a proof, see Comments in A051602. - N. J. A. Sloane, Sep 29 2021] For example, on the 3 X 3 grid (the vertices of a 2 X 2 chessboard) there are four 1 X 1 squares, one (skew) sqrt(2) X sqrt(2) square, and one 3 X 3 square, so a(3)=6. On the 4 X 4 grid (the vertices of a 3 X 3 chessboard) there are 9 1 X 1 squares, 4 2 X 2 squares, 1 3 X 3 square, 4 sqrt(2) X sqrt(2) squares, and 2 sqrt(5) X sqrt(5) squares, so a(4) = 20. See also A024206, A108279. [Comment revised by N. J. A. Sloane, Feb 11 2015]
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
Number of distinct components of the Riemann curvature tensor. - Gene Ward Smith, Apr 24 2006
a(n) is the number of 4 X 4 matrices (symmetrical about each diagonal) M = [a,b,c,d;b,e,f,c;c,f,e,b;d,c,b,a] with a+b+c+d=b+e+f+c=n+2; (a,b,c,d,e,f natural numbers). - Philippe Deléham, Apr 11 2007
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 5-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
a(n) is the number of Dyck (n+1)-paths with exactly n-1 peaks. - David Callan, Sep 20 2007
Starting (1,6,20,50,...) = third partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} C(n+3,i+3)*b(i), where b(i)=[1,2,0,0,0,...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
4-dimensional square numbers. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
Equals row sums of triangle A177877; a(n), n > 1 = (n-1) terms in (1,2,3,...) dot (...,3,2,1) with additive carryovers. Example: a(4) = 20 = (1,2,3) dot (3,2,1) with carryovers = (1*3) + (2*2 + 3) + (3*1 + 7) = (3 + 7 + 10).
Convolution of the triangular numbers A000217 with the odd numbers A004273.
a(n+2) is the number of 4-tuples (w,x,y,z) with all terms in {0,...,n} and w-x=max{w,x,y,z}-min{w,x,y,z}. - Clark Kimberling, May 28 2012
The second level of finite differences is a(n+2) - 2*a(n+1) + a(n) = (n+1)^2, the squares. - J. M. Bergot, May 29 2012
Because the differences of this sequence give A000330, this is also the number of squares in an n+1 X n+1 grid whose sides are not parallel to the axes.
a(n+2) gives the number of 2*2 arrays that can be populated with 0..n such that rows and columns are nondecreasing. - Jon Perry, Mar 30 2013
For n consecutive numbers 1,2,3,...,n, the sum of all ways of adding the k-tuples of consecutive numbers for n=a(n+1). As an example, let n=4: (1)+(2)+(3)+(4)=10; (1+2)+(2+3)+(3+4)=15; (1+2+3)+(2+3+4)=15; (1+2+3+4)=10 and the sum of these is 50=a(4+1)=a(5). - J. M. Bergot, Apr 19 2013
If P(n,k) = n*(n+1)*(k*n-k+3)/6 is the n-th (k+2)-gonal pyramidal number, then a(n) = P(n,k)*P(n-1,k-1) - P(n-1,k)*P(n,k-1). - Bruno Berselli, Feb 18 2014
For n > 1, a(n) = 1/6 of the area of the trapezoid created by the points (n,n+1), (n+1,n), (1,n^2+n), (n^2+n,1). - J. M. Bergot, May 14 2014
For n > 3, a(n) is twice the area of a triangle with vertices at points (C(n,4),C(n+1,4)), (C(n+1,4),C(n+2,4)), and (C(n+2,4),C(n+3,4)). - J. M. Bergot, Jun 03 2014
a(n) is the dimension of the space of metric curvature tensors (those having the symmetries of the Riemann curvature tensor of a metric) on an n-dimensional real vector space. - Daniel J. F. Fox, Dec 15 2018
Coefficients in the terminating series identity 1 - 6*n/(n + 5) + 20*n*(n - 1)/((n + 5)*(n + 6)) - 50*n*(n - 1)*(n - 2)/((n + 5)*(n + 6)*(n + 7)) + ... = 0 for n = 1,2,3,.... Cf. A000330 and A005585. - Peter Bala, Feb 18 2019

Examples

			a(7) = 6*21 - (6*0 + 4*1 + 2*3 + 0*6 - 2*10 - 4*15) = 196. - _Bruno Berselli_, Jun 22 2013
G.f. = x^2 + 6*x^3 + 20*x^4 + 50*x^5 + 105*x^6 + 196*x^7 + 336*x^8 + ...
		

References

  • O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.165).
  • R. Euler and J. Sadek, "The Number of Squares on a Geoboard", Journal of Recreational Mathematics, 251-5 30(4) 1999-2000 Baywood Pub. NY
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 238.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = ((-1)^n)*A053120(2*n, 4)/8 (one-eighth of fifth unsigned column of Chebyshev T-triangle, zeros omitted). Cf. A001296.
Second row of array A103905.
Third column of Narayana numbers A001263.
Partial sums of A000330.
The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces sequences A000012, A000217, A002415, A006542, A006857, A108679, A134288, A134289, A134290, A134291, A140925, A140935, A169937.
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers (A000027) with the k-gonal numbers.

Programs

  • GAP
    List([0..45],n->Binomial(n^2,2)/6); # Muniru A Asiru, Dec 15 2018
  • Magma
    [n^2*(n^2-1)/12: n in [0..50]]; // Wesley Ivan Hurt, May 14 2014
    
  • Maple
    A002415 := proc(n) binomial(n^2,2)/6 ; end proc: # Zerinvary Lajos, Jan 07 2008
  • Mathematica
    Table[(n^4 - n^2)/12, {n, 0, 40}] (* Zerinvary Lajos, Mar 21 2007 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,0,1,6,20},40] (* Harvey P. Dale, Nov 29 2011 *)
  • PARI
    a(n) = n^2 * (n^2 - 1) / 12;
    
  • PARI
    x='x+O('x^200); concat([0, 0], Vec(x^2*(1+x)/(1-x)^5)) \\ Altug Alkan, Mar 23 2016
    

Formula

G.f.: x^2*(1+x)/(1-x)^5. - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{i=0..n} (n-i)*i^2 = a(n-1) + A000330(n-1) = A000217(n)*A000292(n-2)/n = A000217(n)*A000217(n-1)/3 = A006011(n-1)/3, convolution of the natural numbers with the squares. - Henry Bottomley, Oct 19 2000
a(n)+1 = A079034(n). - Mario Catalani (mario.catalani(AT)unito.it), Feb 12 2003
a(n) = 2*C(n+2, 4) - C(n+1, 3). - Paul Barry, Mar 04 2003
a(n) = C(n+2, 4) + C(n+1, 4). - Paul Barry, Mar 13 2003
a(n) = Sum_{k=1..n} A000330(n-1). - Benoit Cloitre, Jun 15 2003
a(n) = n*C(n+1,3)/2 = C(n+1,3)*C(n+1,2)/(n+1). - Mitch Harris, Jul 06 2006
a(n) = A006011(n)/3 = A008911(n)/2 = A047928(n-1)/12 = A083374(n)/6. - Zerinvary Lajos, May 09 2007
a(n) = (1/2)*Sum_{1 <= x_1, x_2 <= n} (det V(x_1,x_2))^2 = (1/2)*Sum_{1 <= i,j <= n} (i-j)^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - Peter Bala, Sep 21 2007
a(n) = C(n+1,3) + 2*C(n+1,4). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
a(n) = (1/48)*sinh(2*arccosh(n))^2. - Artur Jasinski, Feb 10 2010
a(n) = n*A000292(n-1)/2. - Tom Copeland, Sep 13 2011
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n > 4. - Harvey P. Dale, Nov 29 2011
a(n) = (n-1)*A000217(n-1) - Sum_{i=0..n-2} (n-1-2*i)*A000217(i) for n > 1. - Bruno Berselli, Jun 22 2013
a(n) = C(n,2)*C(n+1,3) - C(n,3)*C(n+1,2). - J. M. Bergot, Sep 17 2013
a(n) = Sum_{k=1..n} ( (2k-n)* k(k+1)/2 ). - Wesley Ivan Hurt, Sep 26 2013
a(n) = floor(n^2/3) + 3*Sum_{k=1..n} k^2*floor((n-k+1)/3). - Mircea Merca, Feb 06 2014
Euler transform of length 2 sequence [6, -1]. - Michael Somos, May 28 2014
G.f. x^2*2F1(3,4;2;x). - R. J. Mathar, Aug 09 2015
Sum_{n>=2} 1/a(n) = 21 - 2*Pi^2 = 1.260791197821282762331... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A080852(2,n-2). - R. J. Mathar, Jul 28 2016
a(n) = A046092(n) * A046092(n-1)/48 = A000217(n) * A000217(n-1)/3. - Bruce J. Nicholson, Jun 06 2017
E.g.f.: (1/12)*exp(x)*x^2*(6 + 6*x + x^2). - Stefano Spezia, Dec 07 2018
Sum_{n>=2} (-1)^n/a(n) = Pi^2 - 9 (See A002388). - Amiram Eldar, Jun 28 2020

Extensions

Typo in link fixed by Matthew Vandermast, Nov 22 2010
Redundant comment deleted and more detail on relationship with A000330 added by Joshua Zucker, Jan 01 2013

A050534 Tritriangular numbers: a(n) = binomial(binomial(n,2),2) = n*(n+1)*(n-1)*(n-2)/8.

Original entry on oeis.org

0, 0, 0, 3, 15, 45, 105, 210, 378, 630, 990, 1485, 2145, 3003, 4095, 5460, 7140, 9180, 11628, 14535, 17955, 21945, 26565, 31878, 37950, 44850, 52650, 61425, 71253, 82215, 94395, 107880, 122760, 139128, 157080, 176715, 198135, 221445, 246753, 274170, 303810, 335790
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999

Keywords

Comments

"There are n straight lines in a plane, no two of which are parallel and no three of which are concurrent. Their points of intersection being joined, show that the number of new lines drawn is (1/8)n(n-1)(n-2)(n-3)." (Schmall, 1915).
Several different versions of this sequence are possible, beginning with either one, two or three 0's.
If Y is a 3-subset of an n-set X then, for n>=6, a(n-4) is the number of (n-6)-subsets of X which have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
Number of distinct ways to select 2 pairs of objects from a set of n+1 objects, when order doesn't matter. For example, with n = 3 (4 objects), the 3 possibilities are (12)(34), (13)(24), and (14)(23). - Brian Parsonnet, Jan 03 2012
Partial sums of A027480. - J. M. Bergot, Jul 09 2013
For the set {1,2,...,n}, the sum of the 2 smallest elements of all subsets with 3 elements is a(n) (see Bulut et al. link). - Serhat Bulut, Jan 20 2015
a(n) is also the number of subgroups of S_{n+1} (the symmetric group on n+1 elements) that are isomorphic to D_4 (the dihedral group of order 8). - Geoffrey Critzer, Sep 13 2015
a(n) is the coefficient of x1^(n-3)*x2^2 in exponential Bell polynomial B_{n+1}(x1,x2,...) (number of ways to select 2 pairs among n+1 objects, see above), hence its link with A000292 and A001296 (see formula). - Cyril Damamme, Feb 26 2018
Also the number of 4-cycles in the complete graph K_{n+1}. - Eric W. Weisstein, Mar 13 2018
Number of chiral pairs of colorings of the 4 edges or vertices of a square using n or fewer colors. Each member of a chiral pair is a reflection, but not a rotation, of the other. - Robert A. Russell, Oct 20 2020

Examples

			For a(3)=3, the chiral pairs of square colorings are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. - _Robert A. Russell_, Oct 20 2020
		

References

  • Arthur T. Benjamin and Jennifer Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 154.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, Problem 1, page 72.
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5, case k=2.

Crossrefs

Cf. A000217, A000332, A033487, A107394, A034827, A210569, Second column of triangle A001498.
Cf. similar sequences listed in A241765.
Cf. (square colorings) A006528 (oriented), A002817 (unoriented), A002411 (achiral),
Row 2 of A325006 (orthoplex facets, orthotope vertices) and A337409 (orthotope edges, orthoplex ridges).
Row 4 of A293496 (cycles of n colors using k or fewer colors).

Programs

  • GAP
    List([0..40],n->3*Binomial(n+1,4)); # Muniru A Asiru, Mar 20 2018
  • Magma
    [3*Binomial(n+1, 4): n in [0..40]]; // Vincenzo Librandi, Feb 14 2015
    
  • Maple
    [seq(binomial(n+1,4)*3,n=0..40)]; # Zerinvary Lajos, Jul 18 2006
  • Mathematica
    Table[Binomial[Binomial[n, 2], 2], {n, 0, 50}] (* Stefan Steinerberger, Apr 08 2006 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 3, 15}, 40] (* Harvey P. Dale, Dec 14 2011 *)
    (* Start from Eric W. Weisstein, Mar 13 2018 *)
    Binomial[Binomial[Range[0, 20], 2], 2]
    Nest[Binomial[#, 2] &, Range[0, 20], 2]
    Nest[PolygonalNumber[# - 1] &, Range[0, 20], 2]
    CoefficientList[Series[3 x^3/(1 - x)^5, {x, 0, 20}], x]
    (* End *)
  • PARI
    a(n)=n*(n+1)*(n-1)*(n-2)/8 \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    x='x+O('x^100); concat([0, 0, 0], Vec(3*x^3/(1-x)^5)) \\ Altug Alkan, Nov 01 2015
    
  • Sage
    [(binomial(binomial(n,2),2)) for n in range(0, 39)] # Zerinvary Lajos, Nov 30 2009
    

Formula

a(n) = 3*binomial(n+1, 4) = 3*A000332(n+1).
From Vladeta Jovovic, May 03 2002: (Start)
Recurrence: a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: 3*x^3 / (1-x)^5. (End)
a(n+1) = T(T(n)) - T(n); a(n+2) = T(T(n)+n) where T is A000217. - Jon Perry, Jun 11 2003
a(n+1) = T(n)^2 - T(T(n)) where T is A000217. - Jon Perry, Jul 23 2003
a(n) = T(T(n-1)-1) where T is A000217. - Jon E. Schoenfield, Dec 14 2014
a(n) = 3*C(n, 4) + 3*C(n, 3), for n>3.
From Alexander Adamchuk, Apr 11 2006: (Start)
a(n) = (1/2)*Sum_{k=1..n} k*(k-1)*(k-2).
a(n) = A033487(n-2)/2, n>1.
a(n) = C(n-1,2)*C(n+1,2)/2, n>2. (End)
a(n) = A052762(n+1)/8. - Zerinvary Lajos, Apr 26 2007
a(n) = (4x^4 - 4x^3 - x^2 + x)/2 where x = floor(n/2)*(-1)^n for n >= 0. - William A. Tedeschi, Aug 24 2010
E.g.f.: x^3*exp(x)*(4+x)/8. - Robert Israel, Nov 01 2015
a(n) = Sum_{k=1..n} Sum_{i=1..k} (n-i-1)*(n-k). - Wesley Ivan Hurt, Sep 12 2017
a(n) = A001296(n-1) - A000292(n-1). - Cyril Damamme, Feb 26 2018
Sum_{n>=3} 1/a(n) = 4/9. - Vaclav Kotesovec, May 01 2018
a(n) = A006528(n) - A002817(n) = (A006528(n) - A002411(n)) / 2 = A002817(n) - A002411(n). - Robert A. Russell, Oct 20 2020
Sum_{n>=3} (-1)^(n+1)/a(n) = 32*log(2)/3 - 64/9. - Amiram Eldar, Jan 09 2022
a(n) = Sum_{k=1..2} (-1)^(k+1)*binomial(n,2-k)*binomial(n,2+k). - Gerry Martens, Oct 09 2022

Extensions

Additional comments from Antreas P. Hatzipolakis, May 03 2002

A000127 Maximal number of regions obtained by joining n points around a circle by straight lines. Also number of regions in 4-space formed by n-1 hyperplanes.

Original entry on oeis.org

1, 2, 4, 8, 16, 31, 57, 99, 163, 256, 386, 562, 794, 1093, 1471, 1941, 2517, 3214, 4048, 5036, 6196, 7547, 9109, 10903, 12951, 15276, 17902, 20854, 24158, 27841, 31931, 36457, 41449, 46938, 52956, 59536, 66712, 74519, 82993, 92171, 102091, 112792, 124314, 136698
Offset: 1

Views

Author

Keywords

Comments

a(n) is the sum of the first five terms in the n-th row of Pascal's triangle. - Geoffrey Critzer, Jan 18 2009
{a(k): 1 <= k <= 5} = divisors of 16. - Reinhard Zumkeller, Jun 17 2009
Equals binomial transform of [1, 1, 1, 1, 1, 0, 0, 0, ...]. - Gary W. Adamson, Mar 02 2010
From Bernard Schott, Apr 05 2021: (Start)
As a(n) = 2^(n-1) for n = 1..5, it is misleading to believe that a(n) = 2^(n-1) for n > 5 (see Patrick Popescu-Pampu link); other curiosities: a(6) = 2^5 - 1 and a(10) = 2^8.
The sequence of the first differences is A000125, the sequence of the second differences is A000124, the sequence of the third differences is A000027 and the sequence of the fourth differences is the all 1's sequence A000012 (see J. H. Conway and R. K. Guy reference, p. 80). (End)
a(n) is the number of binary words of length n matching the regular expression 0*1*0*1*0*. A000124 and A000125 count binary words of the form 0*1*0* and 1*0*1*0*, respectively. - Manfred Scheucher, Jun 22 2023

Examples

			a(7)=99 because the first five terms in the 7th row of Pascal's triangle are 1 + 7 + 21 + 35 + 35 = 99. - _Geoffrey Critzer_, Jan 18 2009
G.f. = x + 2*x^2 + 4*x^3 + 8*x^4 + 16*x^5 + 31*x^6 + 57*x^7 + 99*x^8 + 163*x^9 + ...
		

References

  • R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 28.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, Chap. 3.
  • J. H. Conway and R. K. Guy, Le Livre des Nombres, Eyrolles, 1998, p. 80.
  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problem 33 pp. 18; 128 Ellipses Paris 2004.
  • A. Deledicq and D. Missenard, A La Recherche des Régions Perdues, Math. & Malices, No. 22 Summer 1995 issue pp. 22-3 ACL-Editions Paris.
  • M. Gardner, Mathematical Circus, pp. 177; 180-1 Alfred A. Knopf NY 1979.
  • M. Gardner, The Colossal Book of Mathematics, 2001, p. 561.
  • James Gleick, Faster, Vintage Books, NY, 2000 (see pp. 259-261).
  • M. de Guzman, Aventures Mathématiques, Prob. B pp. 115-120 PPUR Lausanne 1990.
  • Ross Honsberger; Mathematical Gems I, Chap. 9.
  • Ross Honsberger; Mathematical Morsels, Chap. 3.
  • Jeux Mathématiques et Logiques, Vol. 3 pp. 12; 51 Prob. 14 FFJM-SERMAP Paris 1988.
  • J. N. Kapur, Reflections of a Mathematician, Chap.36, pp. 337-343, Arya Book Depot, New Delhi 1996.
  • C. D. Miller, V. E. Heeren, J. Hornsby, M. L. Morrow and J. Van Newenhizen, Mathematical Ideas, Tenth Edition, Pearson, Addison-Wesley, Boston, 2003, Cptr 1, 'The Art of Problem Solving, page 6.
  • I. Niven, Mathematics of Choice, pp. 158; 195 Prob. 40 NML 15 MAA 1965.
  • C. S. Ogilvy, Tomorrow's Math, pp. 144-6 OUP 1972.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 252-255.
  • Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, Prometheus Books, NY, 2007, page 81-87.
  • A. M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000; p. 213.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000127 = sum . take 5 . a007318_row  -- Reinhard Zumkeller, Nov 24 2012
    
  • Magma
    [(n^4-6*n^3+23*n^2-18*n+24)/24: n in [1..50]]; // Vincenzo Librandi, Feb 16 2015
    
  • Maple
    A000127 := n->(n^4 - 6*n^3 + 23*n^2 - 18*n + 24)/24;
    with (combstruct):ZL:=[S, {S=Sequence(U, card=1)}, unlabeled]: seq(count(subs(r=6, ZL), size=m), m=0..41); # Zerinvary Lajos, Mar 08 2008
  • Mathematica
    f[n_] := Sum[Binomial[n, i], {i, 0, 4}]; Table[f@n, {n, 0, 40}] (* Robert G. Wilson v, Jun 29 2007 *)
    Total/@Table[Binomial[n-1,k],{n,50},{k,0,4}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,2,4,8,16},50] (* Harvey P. Dale, Aug 24 2011 *)
    Table[(n^4 - 6 n^3 + 23 n^2 - 18 n + 24) / 24, {n, 100}] (* Vincenzo Librandi, Feb 16 2015 *)
    a[ n_] := Binomial[n, 4] + Binomial[n, 2] + 1; (* Michael Somos, Dec 23 2017 *)
  • PARI
    a(n)=(n^4-6*n^3+23*n^2-18*n+24)/24 \\ Charles R Greathouse IV, Mar 22 2016
    
  • PARI
    {a(n) = binomial(n, 4) + binomial(n, 2) + 1}; /* Michael Somos, Dec 23 2017 */
    
  • Python
    def A000127(n): return n*(n*(n*(n - 6) + 23) - 18)//24 + 1 # Chai Wah Wu, Sep 18 2021

Formula

a(n) = C(n-1, 4) + C(n-1, 3) + ... + C(n-1, 0) = A055795(n) + 1 = C(n, 4) + C(n-1, 2) + n.
a(n) = Sum_{k=0..2} C(n, 2k). - Joel Sanderi (sanderi(AT)itstud.chalmers.se), Sep 08 2004
a(n) = (n^4 - 6*n^3 + 23*n^2 - 18*n + 24)/24.
G.f.: (1 - 3*x + 4*x^2 - 2*x^3 + x^4)/(1-x)^5. (for offset 0) - Simon Plouffe in his 1992 dissertation
E.g.f.: (1 + x + x^2/2 + x^3/6 + x^4/24)*exp(x) (for offset 0). [Typos corrected by Juan M. Marquez, Jan 24 2011]
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n > 4. - Harvey P. Dale, Aug 24 2011
a(n) = A000124(A000217(n-1)) - n*A000217(n-2) - A034827(n), n > 1. - Melvin Peralta, Feb 15 2016
a(n) = A223718(-n). - Michael Somos, Dec 23 2017
For n > 2, a(n) = n + 1 + sum_{i=2..(n-2)}sum_{j=1..(n-i)}(1+(i-1)(j-1)). - Alec Jones, Nov 17 2019

Extensions

Formula corrected and additional references from torsten.sillke(AT)lhsystems.com
Additional correction from Jonas Paulson (jonasso(AT)sdf.lonestar.org), Oct 30 2003

A088617 Triangle read by rows: T(n,k) = C(n+k,n)*C(n,k)/(k+1), for n >= 0, k = 0..n.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 5, 1, 10, 30, 35, 14, 1, 15, 70, 140, 126, 42, 1, 21, 140, 420, 630, 462, 132, 1, 28, 252, 1050, 2310, 2772, 1716, 429, 1, 36, 420, 2310, 6930, 12012, 12012, 6435, 1430, 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862
Offset: 0

Views

Author

N. J. A. Sloane, Nov 23 2003

Keywords

Comments

Row sums: A006318 (Schroeder numbers). Essentially same as triangle A060693 transposed.
T(n,k) is number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k U's. E.g., T(2,1)=3 because we have UHD, UDH and HUD. - Emeric Deutsch, Dec 06 2003
Little Schroeder numbers A001003 have a(n) = Sum_{k=0..n} A088617(n,k)*(-1)^(n-k)*2^k. - Paul Barry, May 24 2005
Conjecture: The expected number of U's in a Schroeder n-path is asymptotically Sqrt[1/2]*n for large n. - David Callan, Jul 25 2008
T(n, k) is also the number of order-preserving and order-decreasing partial transformations (of an n-chain) of width k (width(alpha) = |Dom(alpha)|). - Abdullahi Umar, Oct 02 2008
The antidiagonals of this lower triangular matrix are the rows of A055151. - Tom Copeland, Jun 17 2015

Examples

			Triangle begins:
  [0] 1;
  [1] 1,  1;
  [2] 1,  3,   2;
  [3] 1,  6,  10,    5;
  [4] 1, 10,  30,   35,    14;
  [5] 1, 15,  70,  140,   126,    42;
  [6] 1, 21, 140,  420,   630,   462,   132;
  [7] 1, 28, 252, 1050,  2310,  2772,  1716,   429;
  [8] 1, 36, 420, 2310,  6930, 12012, 12012,  6435,  1430;
  [9] 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862;
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.

Crossrefs

Programs

  • Magma
    [[Binomial(n+k,n)*Binomial(n,k)/(k+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 18 2015
    
  • Maple
    R := n -> simplify(hypergeom([-n, n + 1], [2], -x)):
    Trow := n -> seq(coeff(R(n, x), x, k), k = 0..n):
    seq(print(Trow(n)), n = 0..9); # Peter Luschny, Apr 26 2022
  • Mathematica
    Table[Binomial[n+k, n] Binomial[n, k]/(k+1), {n,0,10}, {k,0,n}]//Flatten (* Michael De Vlieger, Aug 10 2017 *)
  • PARI
    {T(n, k)= if(k+1, binomial(n+k, n)*binomial(n, k)/(k+1))}
    
  • SageMath
    flatten([[binomial(n+k, 2*k)*catalan_number(k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 22 2022

Formula

Triangle T(n, k) read by rows; given by [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
T(n, k) = A085478(n, k)*A000108(k); A000108 = Catalan numbers. - Philippe Deléham, Dec 05 2003
Sum_{k=0..n} T(n, k)*x^k*(1-x)^(n-k) = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. - Philippe Deléham, Aug 18 2005
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A107841(n), A080243(n), A000007(n), A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Oct 18 2007
O.g.f. (with initial 1 excluded) is the series reversion with respect to x of (1-t*x)*x/(1+x). Cf. A062991 and A089434. - Peter Bala, Jul 31 2012
G.f.: 1 + (1 - x - T(0))/y, where T(k) = 1 - x*(1+y)/( 1 - x*y/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 03 2013
From Peter Bala, Jul 20 2015: (Start)
O.g.f. A(x,t) = ( 1 - x - sqrt((1 - x)^2 - 4*x*t) )/(2*x*t) = 1 + (1 + t)*x + (1 + 3*t + 2*t^2)*x^2 + ....
1 + x*(dA(x,t)/dx)/A(x,t) = 1 + (1 + t)*x + (1 + 4*t + 3*t^2)*x^2 + ... is the o.g.f. for A123160.
For n >= 1, the n-th row polynomial equals (1 + t)/(n+1)*Jacobi_P(n-1,1,1,2*t+1). Removing a factor of 1 + t from the row polynomials gives the row polynomials of A033282. (End)
From Tom Copeland, Jan 22 2016: (Start)
The o.g.f. G(x,t) = {1 - (2t+1) x - sqrt[1 - (2t+1) 2x + x^2]}/2x = (t + t^2) x + (t + 3t^2 + 2t^3) x^2 + (t + 6t^2 + 10t^3 + 5t^3) x^3 + ... generating shifted rows of this entry, excluding the first, was given in my 2008 formulas for A033282 with an o.g.f. f1(x,t) = G(x,t)/(1+t) for A033282. Simple transformations presented there of f1(x,t) are related to A060693 and A001263, the Narayana numbers. See also A086810.
The inverse of G(x,t) is essentially given in A033282 by x1, the inverse of f1(x,t): Ginv(x,t) = x [1/(t+x) - 1/(1+t+x)] = [((1+t) - t) / (t(1+t))] x - [((1+t)^2 - t^2) / (t(1+t))^2] x^2 + [((1+t)^3 - t^3) / (t(1+t))^3] x^3 - ... . The coefficients in t of Ginv(xt,t) are the o.g.f.s of the diagonals of the Pascal triangle A007318 with signed rows and an extra initial column of ones. The numerators give the row o.g.f.s of signed A074909.
Rows of A088617 are shifted columns of A107131, whose reversed rows are the Motzkin polynomials of A055151, related to A011973. The diagonals of A055151 give the rows of A088671, and the antidiagonals (top to bottom) of A088617 give the rows of A107131 and reversed rows of A055151. The diagonals of A107131 give the columns of A055151. The antidiagonals of A088617 (bottom to top) give the rows of A055151.
(End)
T(n, k) = [x^k] hypergeom([-n, 1 + n], [2], -x). - Peter Luschny, Apr 26 2022

A033487 a(n) = n*(n+1)*(n+2)*(n+3)/4.

Original entry on oeis.org

0, 6, 30, 90, 210, 420, 756, 1260, 1980, 2970, 4290, 6006, 8190, 10920, 14280, 18360, 23256, 29070, 35910, 43890, 53130, 63756, 75900, 89700, 105300, 122850, 142506, 164430, 188790, 215760, 245520, 278256, 314160, 353430, 396270, 442890, 493506, 548340, 607620
Offset: 0

Views

Author

Keywords

Comments

Non-vanishing diagonal of (A132440)^4/4. Third subdiagonal of unsigned A238363 without the zero. Cf. A130534 for relations to colored forests, disposition of flags on flagpoles, and colorings of the vertices of the complete graph K_4. - Tom Copeland, Apr 05 2014
Total number of pips on a set of trominoes (3-armed dominoes) with up to n pips on each arm. - Alan Shore and N. J. A. Sloane, Jan 06 2016
Also the number of minimum connected dominating sets in the (n+2)-crown graph. - Eric W. Weisstein, Jun 29 2017
Crossing number of the (n+3)-cocktail party graph (conjectured). - Eric W. Weisstein, Apr 29 2019
Sum of all numbers in ordered triples (x,y,z) where 0 <= x <= y <= z <= n. - Edward Krogius, Jul 31 2022

Examples

			G.f. = 6*x + 30*x^2 + 90*x^3 + 210*x^4 + 420*x^5 + 756*x^6 + 1260*x^7 + ...
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Partial sums of A007531.
A row of the array in A129533.
A column of the triangle in A331430.
Sequences of the form binomial(n+k,k)*binomial(n+k+2,k): A000012 (k=0), A005563 (k=1), this sequence (k=2), A027790 (k=3), A107395 (k=4), A107396 (k=5), A107397 (k=6), A107398 (k=7), A107399 (k=8).

Programs

Formula

From Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 10 2001: (Start)
G.f.: 6*x/(1-x)^5.
a(n) = 6*binomial(n+3, 4) = 6*A000332(n+3).
a(n) = a(n-1) + A007531(n+1).
a(n) = Sum_{i=0..n} i*(i+1)*(i+2). (End)
Constant term in Bessel polynomial {y_n(x)}''.
a(n) = binomial(n+1,2)*binomial(n+3,2) = A000217(n)*A000217(n+2). - Zerinvary Lajos, May 25 2005
a(n) = binomial(n+2,2)^2 - binomial(n+2,2). - Zerinvary Lajos, May 17 2006
From Zerinvary Lajos, May 11 2007: (Start)
a(n-1) = Sum_{j=1..n} Sum_{i=2..n} i*j.
a(n) = Sum_{j=1..n} j*(n+2)*(n-1)/2. (End)
Sum_{n>0} 1/a(n) = 2/9. - Enrique Pérez Herrero, Nov 10 2013
a(-3-n) = a(n) = 2 * binomial(binomial(n+2, 2), 2). - Michael Somos, Apr 06 2014
a(n) = A002378(binomial(n+2,2)-1). - Salvador Cerdá, Nov 04 2016
a(n) = Sum_{k=0..n} A007531(k+2). See Proof Without Words link. - Michel Marcus, Oct 29 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 16*log(2)/3 - 32/9. - Amiram Eldar, Nov 02 2021
E.g.f.: exp(x)*x*(24 + 36*x + 12*x^2 + x^3)/4. - Stefano Spezia, Jul 03 2025

A060693 Triangle (0 <= k <= n) read by rows: T(n, k) is the number of Schröder paths from (0,0) to (2n,0) having k peaks.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 10, 6, 1, 14, 35, 30, 10, 1, 42, 126, 140, 70, 15, 1, 132, 462, 630, 420, 140, 21, 1, 429, 1716, 2772, 2310, 1050, 252, 28, 1, 1430, 6435, 12012, 12012, 6930, 2310, 420, 36, 1, 4862, 24310, 51480, 60060, 42042, 18018, 4620, 660, 45, 1, 16796
Offset: 0

Views

Author

F. Chapoton, Apr 20 2001

Keywords

Comments

The rows sum to A006318 (Schroeder numbers), the left column is A000108 (Catalan numbers); the next-to-left column is A001700, the alternating sum in each row but the first is 0.
T(n,k) is the number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k peaks. Example: T(2,1)=3 because we have UU*DD, U*DH and HU*D, the peaks being shown by *. E.g., T(n,k) = binomial(n,k)*binomial(2n-k,n-1)/n for n>0. - Emeric Deutsch, Dec 06 2003
A090181*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 14 2008
T(n,k) is also the number of rooted plane trees with maximal degree 3 and k vertices of degree 2 (a node may have at most 2 children, and there are exactly k nodes with 1 child). Equivalently, T(n,k) is the number of syntactically different expressions that can be formed that use a unary operation k times, a binary operation n-k times, and nothing else (sequence of operands is fixed). - Lars Hellstrom (Lars.Hellstrom(AT)residenset.net), Dec 08 2009

Examples

			Triangle begins:
00: [    1]
01: [    1,     1]
02: [    2,     3,      1]
03: [    5,    10,      6,      1]
04: [   14,    35,     30,     10,      1]
05: [   42,   126,    140,     70,     15,      1]
06: [  132,   462,    630,    420,    140,     21,     1]
07: [  429,  1716,   2772,   2310,   1050,    252,    28,    1]
08: [ 1430,  6435,  12012,  12012,   6930,   2310,   420,   36,   1]
09: [ 4862, 24310,  51480,  60060,  42042,  18018,  4620,  660,  45,  1]
10: [16796, 92378, 218790, 291720, 240240, 126126, 42042, 8580, 990, 55, 1]
...
		

Crossrefs

Triangle in A088617 transposed.
T(2n,n) gives A007004.

Programs

  • Maple
    A060693 := (n,k) -> binomial(n,k)*binomial(2*n-k,n)/(n-k+1); # Peter Luschny, May 17 2011
  • Mathematica
    t[n_, k_] := Binomial[n, k]*Binomial[2 n - k, n]/(n - k + 1); Flatten[Table[t[n, k], {n, 0, 9}, {k, 0, n}]] (* Robert G. Wilson v, May 30 2011 *)
  • PARI
    T(n, k) = binomial(n, k)*binomial(2*n - k, n)/(n - k + 1);
    for(n=0, 10, for(k=0, n, print1(T(n, k),", ")); print); \\ Indranil Ghosh, Jul 28 2017
    
  • Python
    from sympy import binomial
    def T(n, k): return binomial(n, k) * binomial(2 * n - k, n) / (n - k + 1)
    for n in range(11): print([T(n, k) for k in range(n + 1)])  # Indranil Ghosh, Jul 28 2017

Formula

Triangle T(n, k) (0 <= k <= n) read by rows; given by [1, 1, 1, 1, 1, ...] DELTA [1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 12 2003
If C_n(x) is the g.f. of row n of the Narayana numbers (A001263), C_n(x) = Sum_{k=1..n} binomial(n,k-1)*(binomial(n-1,k-1)/k) * x^k and T_n(x) is the g.f. of row n of T(n,k), then T_n(x) = C_n(x+1), or T(n,k) = [x^n]Sum_{k=1..n}(A001263(n,k)*(x+1)^k). - Mitch Harris, Jan 16 2007, Jan 31 2007
G.f.: (1 - t*y - sqrt((1-y*t)^2 - 4*y)) / 2.
T(n, k) = binomial(2n-k, n)*binomial(n, k)/(n-k+1). - Philippe Deléham, Dec 07 2003
A060693(n, k) = binomial(2*n-k, k)*A000108(n-k); A000108: Catalan numbers. - Philippe Deléham, Dec 30 2003
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000108(n), A006318(n), A047891(n+1), A082298(n), A082301(n), A082302(n), A082305(n), A082366(n), A082367(n), for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Apr 01 2007
T(n,k) = Sum_{j>=0} A090181(n,j)*binomial(j,k). - Philippe Deléham, May 04 2007
Sum_{k=0..n} T(n,k)*x^(n-k) = (-1)^n*A107841(n), A080243(n), A000007(n), A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Oct 18 2007
From Paul Barry, Jan 29 2009: (Start)
G.f.: 1/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x/(1-.... (continued fraction);
G.f.: 1/(1-(x+xy)/(1-x/(1-(x+xy)/(1-x/(1-(x+xy)/(1-.... (continued fraction). (End)
T(n,k) = [k<=n]*(Sum_{j=0..n} binomial(n,j)^2*binomial(j,k))/(n-k+1). - Paul Barry, May 28 2009
T(n,k) = A104684(n,k)/(n-k+1). - Peter Luschny, May 17 2011
From Tom Copeland, Sep 21 2011: (Start)
With F(x,t) = (1-(2+t)*x-sqrt(1-2*(2+t)*x+(t*x)^2))/(2*x) an o.g.f. (nulling the n=0 term) in x for the A060693 polynomials in t,
G(x,t) = x/(1+t+(2+t)*x+x^2) is the compositional inverse in x.
Consequently, with H(x,t) = 1/(dG(x,t)/dx) = (1+t+(2+t)*x+x^2)^2 / (1+t-x^2), the n-th A060693 polynomial in t is given by (1/n!)*((H(x,t)*d/dx)^n) x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*d/d) u, evaluated at u = 0.
Also, dF(x,t)/dx = H(F(x,t),t). (End)
See my 2008 formulas in A033282 to relate this entry to A088617, A001263, A086810, and other matrices. - Tom Copeland, Jan 22 2016
Rows of this entry are non-vanishing antidiagonals of A097610. See p. 14 of Agapito et al. for a bivariate generating function and its inverse. - Tom Copeland, Feb 03 2016
From Werner Schulte, Jan 09 2017: (Start)
T(n,k) = A126216(n,k-1) + A126216(n,k) for 0 < k < n;
Sum_{k=0..n} (-1)^k*(1+x*(n-k))*T(n,k) = x + (1-x)*A000007(n).
(End)
Conjecture: Sum_{k=0..n} (-1)^k*T(n,k)*(n+1-k)^2 = 1+n+n^2. - Werner Schulte, Jan 11 2017

Extensions

More terms from Vladeta Jovovic, Apr 21 2001
New description from Philippe Deléham, Aug 12 2003
New name using a comment by Emeric Deutsch from Peter Luschny, Jul 26 2017

A326256 MM-numbers of nesting multiset partitions.

Original entry on oeis.org

667, 989, 1334, 1633, 1769, 1817, 1978, 2001, 2021, 2323, 2461, 2623, 2668, 2967, 2987, 3197, 3266, 3335, 3538, 3634, 3713, 3749, 3956, 3979, 4002, 4042, 4171, 4331, 4379, 4429, 4439, 4577, 4646, 4669, 4747, 4819, 4859, 4899, 4922, 4945, 5029, 5246, 5267, 5307
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

First differs from A326255 in lacking 2599.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is nesting if it has two blocks of the form {...x,y...}, {...z,t...} where x < z and t < y or z < x and y < t. This is a stronger condition than capturing, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The sequence of terms together with their multiset multisystems begins:
   667: {{2,2},{1,3}}
   989: {{2,2},{1,4}}
  1334: {{},{2,2},{1,3}}
  1633: {{2,2},{1,1,3}}
  1769: {{1,3},{1,2,2}}
  1817: {{2,2},{1,5}}
  1978: {{},{2,2},{1,4}}
  2001: {{1},{2,2},{1,3}}
  2021: {{1,4},{2,3}}
  2323: {{2,2},{1,6}}
  2461: {{2,2},{1,1,4}}
  2623: {{1,4},{1,2,2}}
  2668: {{},{},{2,2},{1,3}}
  2967: {{1},{2,2},{1,4}}
  2987: {{1,3},{2,2,2}}
  3197: {{2,2},{1,7}}
  3266: {{},{2,2},{1,1,3}}
  3335: {{2},{2,2},{1,3}}
  3538: {{},{1,3},{1,2,2}}
  3634: {{},{2,2},{1,5}}
		

Crossrefs

MM-numbers of crossing multiset partitions are A324170.
MM-numbers of capturing multiset partitions are A326255.
Nesting set partitions are A016098.
Capturing set partitions are A326243.

Programs

  • Mathematica
    nesXQ[stn_]:=MatchQ[stn,{_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;(xt)||(x>z&&yTable[PrimePi[p],{k}]]]];
    Select[Range[10000],nesXQ[primeMS/@primeMS[#]]&]

A033488 a(n) = n*(n+1)*(n+2)*(n+3)/6.

Original entry on oeis.org

0, 4, 20, 60, 140, 280, 504, 840, 1320, 1980, 2860, 4004, 5460, 7280, 9520, 12240, 15504, 19380, 23940, 29260, 35420, 42504, 50600, 59800, 70200, 81900, 95004, 109620, 125860, 143840, 163680, 185504, 209440, 235620, 264180, 295260, 329004, 365560, 405080
Offset: 0

Views

Author

Keywords

Comments

With two initial 0, convolution of the oblong numbers (A002378) with the nonnegative even numbers (A005843). - Bruno Berselli, Oct 24 2016

Crossrefs

1/beta(n, 4) in A061928.
Convolution of the oblong numbers with the odd numbers: A008911.
Fourth column of A003506.

Programs

Formula

a(n) = n*C(3+n, 3). - Zerinvary Lajos, Jan 10 2006
G.f.: 4*x/(1-x)^5. - Colin Barker, Mar 01 2012
G.f.: (2*x/(1-x))*W(0), where W(k) = 1 + 1/( 1 - x*(k+2)*(k+4)/( x*(k+2)*(k+4) + (k+1)*(k+2)/W(k+1) ) ); (continued fraction). - Sergei N. Gladkovskii, Aug 24 2013
From Amiram Eldar, Jun 02 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*log(2) - 16/3. (End)
E.g.f.: exp(x)*x*(24 + 36*x + 12*x^2 + x^3)/6. - Stefano Spezia, Jul 11 2025

A326255 MM-numbers of capturing multiset partitions.

Original entry on oeis.org

667, 989, 1334, 1633, 1769, 1817, 1978, 2001, 2021, 2323, 2461, 2599, 2623, 2668, 2967, 2987, 3197, 3266, 3335, 3538, 3634, 3713, 3749, 3956, 3979, 4002, 4042, 4163, 4171, 4331, 4379, 4429, 4439, 4577, 4646, 4669, 4747, 4819, 4859, 4899, 4922, 4945, 5029, 5198
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

First differs from A326256 in having 2599.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is capturing if it has two blocks of the form {...x...y...} and {...z...t...} where x < z and t < y or z < x and y < t. This is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The sequence of terms together with their multiset multisystems begins:
   667: {{2,2},{1,3}}
   989: {{2,2},{1,4}}
  1334: {{},{2,2},{1,3}}
  1633: {{2,2},{1,1,3}}
  1769: {{1,3},{1,2,2}}
  1817: {{2,2},{1,5}}
  1978: {{},{2,2},{1,4}}
  2001: {{1},{2,2},{1,3}}
  2021: {{1,4},{2,3}}
  2323: {{2,2},{1,6}}
  2461: {{2,2},{1,1,4}}
  2599: {{2,2},{1,2,3}}
  2623: {{1,4},{1,2,2}}
  2668: {{},{},{2,2},{1,3}}
  2967: {{1},{2,2},{1,4}}
  2987: {{1,3},{2,2,2}}
  3197: {{2,2},{1,7}}
  3266: {{},{2,2},{1,1,3}}
  3335: {{2},{2,2},{1,3}}
  3538: {{},{1,3},{1,2,2}}
		

Crossrefs

MM-numbers of crossing multiset partitions are A324170.
MM-numbers of nesting multiset partitions are A326256.
MM-numbers of crossing capturing multiset partitions are A326259.
Capturing set partitions are A326243.

Programs

  • Mathematica
    capXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xt||x>z&&yTable[PrimePi[p],{k}]]]];
    Select[Range[10000],capXQ[primeMS/@primeMS[#]]&]

A011915 a(n) = floor(n*(n-1)*(n-2)*(n-3)/5).

Original entry on oeis.org

0, 0, 0, 0, 4, 24, 72, 168, 336, 604, 1008, 1584, 2376, 3432, 4804, 6552, 8736, 11424, 14688, 18604, 23256, 28728, 35112, 42504, 51004, 60720, 71760, 84240, 98280, 114004, 131544, 151032, 172608, 196416, 222604, 251328, 282744, 317016, 354312
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form floor(24*binomial(n,4)/m): A052762 (m=1), A033486 (m=2), A162668 (m=3), A033487 (m=4), this sequence (m=5), A033488 (m=6), A011917 (m=7), A050534 (m=8), A011919 (m=9), 2*A011930 (m=10), A011921 (m=11), A034827 (m=12), A011923 (m=13), A011924 (m=14), A011925 (m=15), A011926 (m=16), A011927 (m=17), A011928 (m=18), A011929 (m=19), A011930 (m=20), A011931 (m=21), A011932 (m=22), A011933 (m=23), A000332 (m=24), A011935 (m=25),A011936 (m=26), A011937 (m=27), A011938 (m=28), A011939 (m=29), A011940 (m=30), A011941 (m=31), A011942 (m=32), A011795 (m=120).

Programs

  • Magma
    [Floor(n*(n-1)*(n-2)*(n-3)/5): n in [0..60]]; // Vincenzo Librandi, Jun 19 2012
    
  • Mathematica
    Table[Floor[n(n-1)(n-2)(n-3)/5], {n,60}] (* Stefan Steinerberger, Apr 10 2006 *)
    CoefficientList[Series[4*x^4*(1+2*x+2*x^3+x^4)/((1-x)^4*(1+x^5)),{x,0,60}],x] (* Vincenzo Librandi, Jun 19 2012 *)
  • SageMath
    [24*binomial(n,4)//5 for n in range(61)] # G. C. Greubel, Oct 20 2024

Formula

a(n) = +4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +a(n-5) -4*a(n-6) +6*a(n-7) -4*a(n-8) +a(n-9).
G.f.: 4*x^4*(1+2*x+2*x^3+x^4) / ( (1-x)^5*(1+x+x^2+x^3+x^4) ). - R. J. Mathar, Apr 15 2010
a(n) = 4*A011930(n). - G. C. Greubel, Oct 20 2024

Extensions

More terms from Stefan Steinerberger, Apr 10 2006
Zero added in front by R. J. Mathar, Apr 15 2010
Showing 1-10 of 27 results. Next