cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A188630 Triangular numbers that are the product of two triangular numbers greater than 1.

Original entry on oeis.org

36, 45, 210, 630, 780, 990, 1540, 2850, 3570, 4095, 4851, 8778, 11781, 15400, 17955, 19110, 21528, 25200, 26565, 26796, 33930, 37128, 40755, 43956, 61425, 61776, 70125, 79800, 105570, 113050, 122265, 145530, 176715, 189420, 192510, 246753, 270480, 303810, 349866, 437580, 500500, 526851
Offset: 1

Views

Author

T. D. Noe, Apr 06 2011

Keywords

Comments

For squares, it is a simple matter to find squares that are the product of squares greater than 1. Is there a simple procedure for triangular numbers? That is, given n, is it easy to determine whether T(n) is the product of T(i) * T(j) for some i,j > 1?
Breiteig mentions this problem, but does not solve it. The problem can be extended to any polygonal number; for example, when is a pentagonal number the product of two pentagonal numbers? See A188660 and A188663 for the oblong and pentagonal cases.
Sequence A001571 gives the indices of triangular numbers that are 3 times another triangular number. For example, A001571(4) is 132; T(132) is 8778, which equals 3*T(76). Note that A061278 is the companion sequence, whose 4th term is 76. As with the oblong numbers covered by Breiteig, the triangular numbers in this sequence appear to satisfy linear recursions.

Examples

			210 = T(20) = 10 * 21 = T(4) * T(6).
		

Crossrefs

Cf. A000217 (triangular numbers), A085780 (products of two triangular numbers), A140089 (products of two triangular numbers > 1).
Subsequence of A068143 (more than 2 factors allowed).
See also A379609.

Programs

  • Maple
    A188630 := proc(limit) local t,E,n,k,c,b,ist; E:=NULL;
    t := proc(n) option remember; iquo(n*(n+1), 2) end;
    ist := proc(n) option remember; n = t(floor(sqrt(2*n))) end;
    for n from 2 do
        c := t(n); if c > limit then break fi;
        for k from 2 do
            b := c*t(k); if b > limit then break fi;
            if ist(b) then E := E, b fi;
    od od; sort({E}) end:
    A188630(200000); # Peter Luschny, Dec 21 2017
  • Mathematica
    TriangularQ[n_] := IntegerQ[Sqrt[1 + 8 n]]; TriIndex[n_] := Floor[(-1 + Sqrt[1 + 8*n])/2]; lim = 10^6; nMax = TriIndex[lim/3]; tri = Table[n (n + 1)/2, {n, 2, nMax}]; Union[Reap[Do[num = tri[[i]]*tri[[j]]; If[TriangularQ[num], Sow[num]], {i, TriIndex[Sqrt[lim]]}, {j, i, TriIndex[lim/tri[[i]]] - 1}]][[2, 1]]]
    Module[{upto=530000,maxr},maxr=Ceiling[(Sqrt[1+8*Ceiling[upto/3]]-1)/2]; Union[Select[Times@@@Tuples[Rest[Accumulate[Range[maxr]]],2], IntegerQ[ Sqrt[1+8#]]&&#<=upto&]]] (* Harvey P. Dale, Jun 12 2012 *)

A072389 Numbers of the form x*(x+1) * y*(y+1) ("bipronics") with x and y nonnegative integers.

Original entry on oeis.org

0, 4, 12, 24, 36, 40, 60, 72, 84, 112, 120, 144, 180, 220, 240, 252, 264, 312, 336, 360, 364, 400, 420, 432, 480, 504, 540, 544, 600, 612, 660, 672, 684, 760, 792, 840, 864, 900, 924, 936, 1012, 1080, 1092, 1104, 1120, 1200, 1260, 1300, 1320
Offset: 1

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Jul 20 2002

Keywords

Comments

Nonnegative numbers k = a*b = c*d, where a+b = c+d+1. - Yifan Xie, Jun 28 2024

Examples

			a(3) = 1*2*2*3 = 12.
		

Crossrefs

Cf. A053990 (sequence of bipronics with x and y distinct).
Cf. A085780 (one quarter of this).

Programs

Extensions

More terms from James Sellers, Jul 23 2002

A085782 Numbers that can be written as a product of triangular numbers.

Original entry on oeis.org

0, 1, 3, 6, 9, 10, 15, 18, 21, 27, 28, 30, 36, 45, 54, 55, 60, 63, 66, 78, 81, 84, 90, 91, 100, 105, 108, 120, 126, 135, 136, 150, 153, 162, 165, 168, 171, 180, 189, 190, 198, 210, 216, 225, 231, 234, 243, 252, 253, 270, 273, 276, 280, 300, 315, 324, 325, 330, 351
Offset: 1

Views

Author

Jon Perry, Jul 23 2003

Keywords

Comments

These are the numbers that appear at least once in A007425 (the number of ordered factorizations of n as n = r*s*t). - Matthew Vandermast, Jul 26 2003
Contains A085780 as a subsequence (exactly 2 factors); 27,54,81,... are the first elements in the complement. - M. F. Hasler, Apr 03 2008
The number of r-orthotopes of any size contained in a n1*n2*...*nr r-orthotope, where a(n)=t(n1)*t(n2)*...*t(nr) and t(k)=A000217(k). - Dimitri Boscainos, Aug 27 2015

Examples

			54 = 6*3*3 = t(3)*t(2)*t(2).
		

Crossrefs

Extensions

More terms from Max Alekseyev and Jon E. Schoenfield, Sep 04 2009

A104473 a(n) = binomial(n+2,2)*binomial(n+6,2).

Original entry on oeis.org

15, 63, 168, 360, 675, 1155, 1848, 2808, 4095, 5775, 7920, 10608, 13923, 17955, 22800, 28560, 35343, 43263, 52440, 63000, 75075, 88803, 104328, 121800, 141375, 163215, 187488, 214368, 244035, 276675, 312480, 351648, 394383, 440895, 491400, 546120, 605283, 669123
Offset: 0

Views

Author

Zerinvary Lajos, Apr 18 2005

Keywords

Examples

			a(0) = C(0+2,2)*C(0+6,2) = C(2,2)*C(6,2) = 1*15 = 155.
a(6) = 1*3*5 + 2*4*6 + 3*5*7 + 4*6*8 + 5*7*9 + 6*8*10 + 7*9*11 = 1848.
		

Crossrefs

Subsequence of A085780.

Programs

  • Magma
    [Binomial(n+2, 2)*Binomial(n+6, 2): n in [0..50]]; // Vincenzo Librandi, Apr 28 2014
    
  • Mathematica
    f[n_] := Binomial[n + 2, 2] Binomial[n + 6, 2]; Table[f[n], {n,0,40}] (* Robert G. Wilson v, Apr 20 2005 *)
    CoefficientList[Series[3 (5-4*x+x^2)/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Apr 28 2014 *)
  • PARI
    a(n)=binomial(n+2,2)*binomial(n+6,2) \\ Charles R Greathouse IV, Jun 07 2013
    
  • SageMath
    def A104473(n): return binomial(n+2,2)*binomial(n+6,2)
    print([A104473(n) for n in range(51)]) # G. C. Greubel, Mar 05 2025

Formula

a(n) = (1/4)*(n+1)*(n+2)*(n+5)*(n+6).
a(n) = A034856(n+2)^2 - 1. - J. M. Bergot, Dec 14 2010
G.f.: 3*(5-4*x+x^2)/(1-x)^5. - Colin Barker, Sep 21 2012
a(n) = Sum_{i=1..n+1} i*(i+2)*(i+4). - Bruno Berselli, Apr 28 2014
a(n) = A000217(n)*A000217(n+4) = 3*A033275(n+4). - R. J. Mathar, Nov 29 2015
From Amiram Eldar, Aug 30 2022: (Start)
Sum_{n>=0} 1/a(n) = 43/450.
Sum_{n>=0} (-1)^n/a(n) = 16*log(2)/15 - 154/225. (End)
From G. C. Greubel, Mar 05 2025: (Start)
a(n) = 90*A000579(n+6)/A000279(n+3).
E.g.f.: (1/4)*(60 + 192*x + 114*x^2 + 20*x^3 + x^4)*exp(x). (End)

A104676 a(n) = binomial(n+2,2) * binomial(n+7,2).

Original entry on oeis.org

21, 84, 216, 450, 825, 1386, 2184, 3276, 4725, 6600, 8976, 11934, 15561, 19950, 25200, 31416, 38709, 47196, 57000, 68250, 81081, 95634, 112056, 130500, 151125, 174096, 199584, 227766, 258825, 292950, 330336, 371184, 415701, 464100, 516600, 573426, 634809, 700986
Offset: 0

Views

Author

Zerinvary Lajos, Apr 22 2005

Keywords

Examples

			If n=0 then C(0+2,0+0)*C(0+7,2) = C(2,0)*C(7,2) = 1*21 = 21.
If n=8 then C(8+2,8+0)*C(8+7,2) = C(10,8)*C(15,2) = 45*105 = 4725.
		

Crossrefs

Subsequence of A085780.

Programs

Formula

From R. J. Mathar, Nov 29 2015: (Start)
a(n) = A000217(n+1) * A000217(n+6).
G.f.: 3*(7 - 7*x + 2*x^2)/(1-x)^5. (End)
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, Jan 25 2022
From Amiram Eldar, Aug 30 2022: (Start)
Sum_{n>=0} 1/a(n) = 7/100.
Sum_{n>=0} (-1)^n/a(n) = 7/180. (End)
E.g.f.: (1/4)*(84 + 252*x + 138*x^2 + 22*x^3 + x^4)*exp(x). - G. C. Greubel, Mar 01 2025

A105938 a(n) = binomial(n+2,2)*binomial(n+5,2).

Original entry on oeis.org

10, 45, 126, 280, 540, 945, 1540, 2376, 3510, 5005, 6930, 9360, 12376, 16065, 20520, 25840, 32130, 39501, 48070, 57960, 69300, 82225, 96876, 113400, 131950, 152685, 175770, 201376, 229680, 260865, 295120, 332640, 373626, 418285, 466830, 519480, 576460
Offset: 0

Views

Author

Zerinvary Lajos, Apr 27 2005

Keywords

Examples

			If n=0 then C(0+2,0)*C(0+5,2) = C(2,0)*C(5,2) = 1*10 = 10.
If n=9 then C(9+2,9)*C(9+5,2) = C(11,9)*C(14,2) = 55*91 = 5005.
		

Crossrefs

Subsequence of A085780.

Programs

  • Magma
    A105938:= func< n | 30*Binomial(n+5,5)/(n+3) >;
    [A105938(n): n in [0..40]]; // G. C. Greubel, Mar 11 2025
    
  • Maple
    a:= n-> binomial(n+2,n)*binomial(n+5,2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 16 2008
  • Mathematica
    Table[n(n+1)(n+3)(n+4)/4, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *)
    Table[Binomial[n + 2, n] Binomial[n + 5, 2], {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {10, 45, 126, 280, 540}, 40] (* Harvey P. Dale, Sep 05 2013 *)
  • SageMath
    def A105938(n): return 30*binomial(n+5,5)//(n+3)
    print([A105938(n) for n in range(41)]) # G. C. Greubel, Mar 11 2025

Formula

G.f.: (10 - 5*x + x^2)/(1-x)^5. - Alois P. Heinz, Oct 16 2008
a(0)=10, a(1)=45, a(2)=126, a(3)=280, a(4)=540; for n>4, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Sep 05 2013
a(n) = A000217(n+1)*A000217(n+4). - R. J. Mathar, Nov 29 2015
a(n) = A000096(n+1)*A000096(n+2). - Bruno Berselli, Sep 21 2016
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=0} 1/a(n) = 5/36.
Sum_{n>=0} (-1)^n/a(n) = 1/12. (End)
From G. C. Greubel, Mar 11 2025: (Start)
a(n) = 30*A000389(n+5)/(n+3).
E.g.f.: (1/4)*(40 + 140*x + 92*x^2 + 18*x^3 + x^4)*exp(x). (End)

A110904 Integers that can be expressed as a product of triangular numbers in 3 different ways.

Original entry on oeis.org

630, 3780, 14850, 16380, 21420, 114660, 131670, 159390, 178200, 234360, 401940, 478800, 523260, 556920, 582120, 712530, 749700, 835380, 1455300, 1753290, 1936935, 2086920, 2162160, 2633400, 2841300, 3828825, 4791150, 5821200, 6056820, 6380010, 6396390, 6486480
Offset: 1

Views

Author

Luke T Pebody (ltp1000(AT)cam.ac.uk), Sep 21 2005

Keywords

Examples

			835380 = 91*9180 = 153*5460 = 630*1326.
		

Crossrefs

Subsequence of A264961 and of A085780.

Programs

  • Python
    from _future_ import division
    mmax = 10**3
    tmax, A110904_dict = mmax*(mmax+1)//2, {}
    ti = 0
    for i in range(1,mmax+1):
        ti += i
        p = ti*i*(i-1)//2
        for j in range(i,mmax+1):
            p += ti*j
            if p <= tmax:
                A110904_dict[p] = A110904_dict[p]+1 if p in A110904_dict else 1
            else:
                break
    A110904_list = sorted([i for i in A110904_dict if A110904_dict[i] == 3]) # Chai Wah Wu, Nov 29 2015

Extensions

a(19)-a(20) from R. J. Mathar, Nov 29 2015

A140089 Products of two triangular numbers each > 1.

Original entry on oeis.org

9, 18, 30, 36, 45, 60, 63, 84, 90, 100, 108, 126, 135, 150, 165, 168, 198, 210, 216, 225, 234, 270, 273, 280, 315, 330, 360, 396, 408, 420, 441, 450, 459, 468, 513, 540, 546, 550, 570, 588, 630, 660, 675, 693, 720, 756, 759, 780, 784, 816, 825, 828, 900, 910
Offset: 1

Views

Author

N. J. A. Sloane, Jun 27 2008

Keywords

Crossrefs

Cf. A000217. Subsequence of A085780.

Programs

  • Maple
    isA140089 := proc(n)
        for d in numtheory[divisors](n) minus {1} do
            if d^2 > n then
                return false;
            end if;
            if isA000217(d) then
                if isA000217(n/d) then
                    return true;
                end if;
            end if;
        end do:
        return false;
    end proc:
    for n from 1 to 1000 do
        if isA140089(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jul 31 2024

Extensions

More terms from Rick L. Shepherd and John W. Layman, Jul 03 2008

A225440 Triangular numbers that are the product of three distinct triangular numbers greater than 1.

Original entry on oeis.org

378, 630, 990, 3240, 4095, 4950, 5460, 9180, 15400, 19110, 25200, 31878, 37128, 37950, 39060, 52650, 61425, 79800, 97020, 103740, 105570, 122265, 145530, 157080, 161028, 176715, 192510, 221445, 265356, 288420, 304590, 306936, 346528, 437580, 500500, 545490, 583740
Offset: 1

Views

Author

Alex Ratushnyak, May 08 2013

Keywords

Comments

Triangular numbers of the form triangular(x) * triangular(y) * triangular(z), x > y > z > 1.

Examples

			378 = 3 * 6 * 21.
630 = 3 * 10 * 21.
990 = 3 * 6 * 55.
		

Crossrefs

Programs

  • C
    #include 
    typedef unsigned long long U64;
    U64 isTriangular(U64 a) {  // ! Must be a < (1<<63)
        U64 s = sqrt(a*2);
        if (a>=(1ULL<<63)) exit(1);
        return (s*(s+1)/2 == a);
    }
    int compare64(const void *p1, const void *p2) {
      if (*(U64*)p1 == *(U64*)p2) return 0;
      if (*(U64*)p1 < *(U64*)p2) return -1;
      return 1;
    }
    #define TOP (1<<21)
    U64 d[TOP];
    int main() {
      U64 c, x, tx, y, ty, z, tz, p = 0;
        for (x = tx = 3; tx <= TOP; tx+=x, ++x) {
        for (y = ty = 3; ty < tx;   ty+=y, ++y) {
        for (z = tz = 3; tz < ty;   tz+=z, ++z) {
        c = tx*ty*tz;
        if (c <= TOP*18 && isTriangular(c))  d[p++] = c;
      }}}
      qsort(d, p, 8, compare64);
      for (x=c=0; cx) printf("%llu, ", y), x=y;
      return 0;
    }

A264961 Numbers that are products of two triangular numbers in more than one way.

Original entry on oeis.org

36, 45, 210, 315, 360, 630, 780, 990, 1260, 1386, 1540, 1800, 2850, 2970, 3510, 3570, 3780, 4095, 4788, 4851, 6300, 7920, 8415, 8550, 8778, 9450, 11700, 11781, 14850, 15400, 15561, 16380, 17640, 17955, 18018, 18648, 19110, 20790, 21420, 21450, 21528, 25116, 25200, 26565, 26775, 26796, 27720, 28980
Offset: 1

Views

Author

R. J. Mathar, Nov 29 2015

Keywords

Comments

One of the factors in the product may be 1 = A000217(1). We count the ways of writing n = A000217(i)*A000217(j) with i <= j, unordered factorizations.

Examples

			36 = 1*36 = 6*6. 45 = 1*45 = 3*15. 210 = 1*210 = 10*21. 315 = 3*105 = 15*21. 360 = 3*120 = 10*36. 630 = 1*630 = 3*210 = 6*105. 3780= 6*360 = 10 * 378 = 36*105.
		

Crossrefs

Subsequence of A085780. A188630 and A110904 are subsequences of this.

Programs

  • Maple
    A264961ct := proc(n)
        local ct,d ;
        ct := 0 ;
        for d in numtheory[divisors](n) do
            if d^2 > n then
                return ct;
            end if;
            if isA000217(d) then
                if isA000217(n/d) then
                    ct := ct+1 ;
                end if;
            end if;
        end do:
        return ct;
    end proc:
    for n from 1 to 30000 do
        if A264961ct(n) > 1 then
            printf("%d,",n) ;
        end if;
    end do:
  • Mathematica
    lim = 10000; t = Accumulate[Range@lim]; f[n_] := Select[{#, n/#} & /@ Select[Divisors@ n, # <= Sqrt@ n && MemberQ[t, #] &], MemberQ[t, Last@ #] &]; Select[Range@ lim, Length@ f@ # == 2 &] (* Michael De Vlieger, Nov 29 2015 *)
  • Python
    from _future_ import division
    mmax = 10**3
    tmax, A264961_dict = mmax*(mmax+1)//2, {}
    ti = 0
    for i in range(1,mmax+1):
        ti += i
        p = ti*i*(i-1)//2
        for j in range(i,mmax+1):
            p += ti*j
            if p <= tmax:
                A264961_dict[p] = 2 if p in A264961_dict else 1
            else:
                break
    A264961_list = sorted([i for i in A264961_dict if A264961_dict[i] > 1]) # Chai Wah Wu, Nov 29 2015
Showing 1-10 of 16 results. Next