cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A085780 Numbers that are a product of 2 triangular numbers.

Original entry on oeis.org

0, 1, 3, 6, 9, 10, 15, 18, 21, 28, 30, 36, 45, 55, 60, 63, 66, 78, 84, 90, 91, 100, 105, 108, 120, 126, 135, 136, 150, 153, 165, 168, 171, 190, 198, 210, 216, 225, 231, 234, 253, 270, 273, 276, 280, 300, 315, 325, 330, 351, 360, 378, 396, 406, 408, 420, 435, 441
Offset: 1

Views

Author

Jon Perry, Jul 23 2003

Keywords

Comments

Is there a fast algorithm for detecting these numbers? - Charles R Greathouse IV, Jan 26 2013
The number of rectangles with positive width 1<=w<=i and positive height 1<=h<=j contained in an i*j rectangle is t(i)*t(j), where t(k)=A000217(k), see A096948. - Dimitri Boscainos, Aug 27 2015

Examples

			18 = 3*6 = t(2)*t(3) is a product of two triangular numbers and therefore in the sequence.
		

Crossrefs

Cf. A000217, A085782, A068143, A000537 (subsequence), A006011 (subsequence), A033487 (subsequence), A188630 (subsequence).
Cf. A072389 (this times 4).

Programs

  • Maple
    isA085780 := proc(n)
         local d;
         for d in numtheory[divisors](n) do
            if d^2 > n then
                return false;
            end if;
            if isA000217(d) then
                if isA000217(n/d) then
                    return true;
                end if;
            end if;
        end do:
        return false;
    end proc:
    for n from 1 to 1000 do
        if isA085780(n) then
            printf("%d,",n) ;
        end if ;
    end do: # R. J. Mathar, Nov 29 2015
  • Mathematica
    t1 = Table[n (n+1)/2, {n, 0, 100}];Select[Union[Flatten[Outer[Times, t1, t1]]], # <= t1[[-1]] &] (* T. D. Noe, Jun 04 2012 *)
  • PARI
    A003056(n)=(sqrtint(8*n+1)-1)\2
    list(lim)=my(v=List([0]),t); for(a=1, A003056(lim\1), t=a*(a+1)/2; for(b=a, A003056(lim\t), listput(v,t*b*(b+1)/2))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jan 26 2013
    
  • Python
    from itertools import count, islice
    from sympy import divisors, integer_nthroot
    def A085780_gen(startvalue=0): # generator of terms
        if startvalue <= 0:
            yield 0
        for n in count(max(startvalue,1)):
            for d in divisors(m:=n<<2):
                if d**2 > m:
                    break
                if integer_nthroot((d<<2)+1,2)[1] and integer_nthroot((m//d<<2)+1,2)[1]:
                    yield n
                    break
    A085780_list = list(islice(A085780_gen(),10)) # Chai Wah Wu, Aug 28 2022

Formula

Conjecture: There are about sqrt(x)*log(x) terms up to x. - Charles R Greathouse IV, Jul 11 2024

Extensions

More terms from Max Alekseyev and Jon E. Schoenfield, Sep 04 2009

A068143 Triangular numbers which are products of triangular numbers larger than 1.

Original entry on oeis.org

36, 45, 210, 300, 378, 630, 780, 990, 1485, 1540, 2850, 3240, 3570, 4095, 4851, 4950, 5460, 8778, 9180, 11781, 15400, 17955, 19110, 21528, 25200, 26565, 26796, 31878, 33930, 37128, 37950, 39060, 40755, 43956, 52650, 61425, 61776, 70125, 79800, 82215, 97020
Offset: 1

Views

Author

Amarnath Murthy, Feb 23 2002

Keywords

Examples

			210 is a term as 210 = 21*10 both triangular numbers.
300 is also a term since 300 = 3*10*10.
		

Crossrefs

Cf. A000217 (triangular numbers), A374374.
Except the first term, row n=3 of A374370 and row n=2 of A374498.
A188630 is a subsequence (only 2 factors allowed).

Extensions

Corrected and extended by Jon E. Schoenfield, Jul 23 2006
a(38)-a(41) from Pontus von Brömssen, Jul 02 2024

A225390 Triangular numbers representable as Tx*Ty, where Tx>1 and Ty>1 are triangular numbers, in two or more ways.

Original entry on oeis.org

630, 749700, 2162160, 34283340, 76576500, 105887628, 330360660, 865924920, 2456409186, 17246794950, 35051708835, 999302826060, 3153804823260, 161708540211900, 1153195485992550, 1330786621788263640
Offset: 1

Views

Author

Alex Ratushnyak, May 06 2013

Keywords

Comments

Triangular numbers t such that there are four triangular numbers t1, t2, t3, t4, all bigger than 1, such that t = t1 * t2 = t3 * t4.

Crossrefs

Programs

  • C
    #include 
    typedef unsigned long long U64;
    U64 isTriangular(U64 a) {
        U64 sr = 1ULL<<31, s, b;
        while (a < sr*(sr+1)/2)  sr>>=1;
        for (b = sr>>1; b; b>>=1) {
            s = sr+b;
            if (a >= s*(s+1)/2)  sr = s;
        }
        return (sr*(sr+1)/2 == a);
    }
    int main() {
      U64 c, i, j, k, t;
      for (i = t = 0; i < (1ULL<<32); i++) {
        for (c=0, t += i, k = j = 3; k*k < t; k+=j, ++j)
          if (t%k==0 && isTriangular(t/k)) ++c;
        if (c>1) printf("%llu, ", t);
      }
      return 0;
    }

Extensions

a(15)-a(16) from Donovan Johnson, May 06 2013

A188663 Pentagonal numbers that are the product of two pentagonal numbers greater than 1.

Original entry on oeis.org

10045, 11310, 52360, 230300, 341055, 4048352, 6192520, 16008300, 18573282, 21430710, 44175780, 49452975, 75377337, 89579112, 174695500, 201243042, 212087876, 616116800, 755319180, 1369585525, 1557466482, 1586309340, 1625178126, 1674425676, 1744607172, 1857169860, 1868270250, 1985347551
Offset: 1

Views

Author

T. D. Noe, Apr 07 2011

Keywords

Comments

See A188630 for the triangular case and A188660 for the oblong case.

Examples

			11310 = 5 * 2262; that is, pen(87) = pen(2) * pen(39).
		

Crossrefs

Cf. A000326 (pentagonal numbers).

Programs

  • Mathematica
    PentagonalQ[n_] := IntegerQ[(1 + Sqrt[1 + 24*n])/6]; PenIndex[n_] := Floor[(1 + Sqrt[1 + 24*n])/6]; lim = 10^10; nMax = PenIndex[lim/5]; pen = Table[n (3 n - 1)/2, {n, 2, nMax}]; Union[Reap[Do[num = pen[[i]]*pen[[j]]; If[PentagonalQ[num], Sow[num]], {i, PenIndex[Sqrt[lim]]}, {j, i, PenIndex[lim/pen[[i]]] - 1}]][[2, 1]]]

A188660 Oblong numbers that are the product of two oblong numbers.

Original entry on oeis.org

12, 72, 240, 420, 600, 1260, 2352, 4032, 6480, 7140, 9900, 14280, 14520, 20592, 28392, 38220, 46872, 50400, 65280, 78120, 83232, 104652, 123552, 129960, 159600, 194040, 233772, 279312, 291060, 331200, 390000, 456300, 485112, 530712, 609180, 613872, 699732, 706440, 809100, 852852, 922560
Offset: 1

Views

Author

T. D. Noe, Apr 07 2011

Keywords

Comments

Breiteig writes about the finding these numbers, but does not list these numbers as a sequence. The problem can be extended to any polygonal number: for example, when is a pentagonal number the product of two pentagonal numbers? See A188630 and A188663 for the triangular and pentagonal cases.
As shown in the example, the product of consecutive oblong numbers is also oblong: oblong(n) * oblong(n+1) = oblong(n*(n+2)).

Examples

			240 = 12 * 20; that is, oblong(15) = oblong(3) * oblong(4).
		

Crossrefs

Cf. A002378 (oblong numbers), A188630, A188663, A374374 (more than 2 factors allowed).

Programs

  • Mathematica
    OblongQ[n_] := IntegerQ[Sqrt[1 + 4 n]]; OblongIndex[n_] := Floor[(-1 + Sqrt[1 + 4*n])/2]; lim = 10^6; nMax = OblongIndex[lim/2]; obl = Table[n (n + 1), {n, nMax}]; Union[Reap[Do[num = obl[[i]]*obl[[j]]; If[OblongQ[num], Sow[num]], {i, OblongIndex[Sqrt[lim]]}, {j, i, OblongIndex[lim/obl[[i]]]}]][[2, 1]]]

A253650 Triangular numbers that are the product of a triangular number and a square number (both greater than 1).

Original entry on oeis.org

300, 1176, 3240, 7260, 14196, 25200, 29403, 41616, 64980, 97020, 139656, 195000, 228150, 265356, 353220, 461280, 592416, 749700, 936396, 1043290, 1155960, 1412040, 1708476, 2049300, 2438736, 2881200, 3381300, 3499335, 3943836, 4573800, 5276376, 6056940, 6921060, 7874496
Offset: 1

Views

Author

Antonio Roldán, Jan 07 2015

Keywords

Examples

			3240 is in the sequence because 3240 is triangular number (3240=80*81/2), and 3240=10*324=(4*5/2)*(18^2), product of triangular number 10 and square number 324.
		

Crossrefs

Programs

  • Mathematica
    triQ[n_] := IntegerQ@ Sqrt[8n + 1]; lst = Sort@ Flatten@ Outer[Times, Table[ n(n + 1)/2, {n, 2, 400}], Table[ n^2, {n, 2, 200}]]; Select[ lst, triQ] (* Robert G. Wilson v, Jan 13 2015 *)
  • PARI
    {i=3; j=3; while(i<=10^7, k=3; p=3; c=0; while(k1, c=k); if(c>0, print1(i, ", ")); k+=p; p+=1); i+=j; j+=1)}
    
  • PARI
    is(n)=if(!ispolygonal(n,3), return(0)); fordiv(core(n,1)[2], d, d>1 && ispolygonal(n/d^2,3) && n>d^2 && return(1)); 0 \\ Charles R Greathouse IV, Sep 29 2015
    
  • PARI
    list(lim)=my(v=List(),t,c); for(n=24,(sqrt(8*lim+1)-1)\2, t=n*(n+1)/2; c=core(n,1)[2]*core(n+1,1)[2]; if(valuation(t,2)\2 < valuation(c,2), c/=2); fordiv(c, d, if(d>1 && ispolygonal(t/d^2,3) && t>d^2, listput(v,t); break))); Vec(v) \\ Charles R Greathouse IV, Sep 29 2015

A253651 Triangular numbers that are the product of a triangular number and a prime number.

Original entry on oeis.org

0, 3, 6, 15, 21, 45, 66, 78, 105, 190, 210, 231, 435, 465, 630, 861, 903, 1035, 1326, 2415, 2556, 2628, 3003, 3570, 4005, 4950, 5460, 5565, 5995, 7140, 8646, 8778, 9870, 12246, 16471, 16836, 17205, 17391, 17766, 20100, 22155, 26565, 26796, 28680, 28920, 30381, 32131, 33411, 33930, 36856
Offset: 1

Views

Author

Antonio Roldán, Jan 07 2015

Keywords

Examples

			190 is in the sequence because it is triangular (190=19*20/2) and 190=10*19, with 10 triangular number and 19 prime number.
		

Crossrefs

Cf. A029549 (T is 2*t), A076140 (T is 3*t), A225503 (first T to be prime(n)*t).

Programs

  • Maple
    N:= 10^5: # to get all terms <= N
    Primes:= select(isprime, [2,seq(2*k+1,k=1..N/3)]):
    select(t -> issqr(1+8*t), {seq(seq(a*(a+1)/2*p, a = 2 .. floor(sqrt(2*N/p))), p = Primes)});
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(%,list)); # Robert Israel, Jan 07 2015
  • Mathematica
    Join[{0},Module[{nn=300,trs},trs=Accumulate[Range[nn]];Select[ trs,AnyTrue[ #/trs,PrimeQ]&]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 16 2018 *)
  • PARI
    {i=1; j=2;print1(0,", "); while(i<=10^5, k=1; p=2; c=0; while(k1, c=k); if(c>0, print1(i, ", ")); k+=p; p+=1); i+=j; j+=1)}

A253653 Triangular numbers that are the product of a square number and a prime number.

Original entry on oeis.org

3, 28, 45, 153, 171, 300, 325, 496, 2556, 2628, 3321, 4753, 4851, 7381, 8128, 13203, 19900, 25200, 25425, 29161, 29403, 56953, 64980, 65341, 101025, 166753, 195625, 209628, 320400, 354061, 388521, 389403, 468028, 662976, 664128, 749700, 750925, 780625, 781875, 936396, 1063611, 1157481
Offset: 1

Views

Author

Antonio Roldán, Jan 07 2015

Keywords

Comments

The perfect numbers 28, 496, 8128, ... (A000396) are in the sequence, because A000396(n) = 2^(k-1)*(2^k-1) = 2^k*(2^k-1)/2 is a triangular number, and is the product of 2^(k-1) (a square when k>2) and 2^k-1 (a Mersenne prime number).
Number of terms less than 10^n: 0, 2, 7, 14, 22, 38, 68, 100, 165, 262, 420, 667, 1064, 1754, .... - Robert G. Wilson v, Jan 11 2015
This sequence is the intersection of A000217 and A229125. - Antonio Roldán, Jan 12 2015

Examples

			45 is in the sequence because it is a triangular number (45 = 9*10/2) and 45 = 9*5, with 9 a square number and 5 a prime number.
		

Crossrefs

Programs

  • Maple
    N:= 10^7: # to get all entries <= N
    Tris:= {seq(x*(x+1)/2, x = 1 .. floor((sqrt(1+8*N)-1)/2))}:
    Primes:= select(isprime,[2,seq(2*i+1,i=1..floor(N/8-1))]):
    Tris intersect {3,seq(seq(p*y^2,y=2..floor(sqrt(N/p))),p=Primes)};
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(%, list));  # Robert Israel, Jan 14 2015
  • Mathematica
    tri[n_] := n(n+1)/2; fQ[n_] := Block[{exp = Sort[ Last@# & /@ FactorInteger@ n]}, exp[[1]] == 1 != exp[[2]] && Union@ Mod[ Rest@ exp, 2] == {0}]; Select[ tri@ Range@ 1500, fQ] (* Robert G. Wilson v, Jan 11 2015 *)
  • PARI
    {i=1; j=2; while(i<=3*10^6, k=1; p=3; c=0; while(k0, print1(i, ", ")); k+=p; p+=2); i+=j; j+=1)}
    
  • PARI
    lista(nn) = {for (n=1, nn, if (isprime(core(t=n*(n+1)/2)), print1(t, ", ")););} \\ Michel Marcus, Jan 12 2015

A253652 Triangular numbers that are the product of a triangular number and an oblong number.

Original entry on oeis.org

0, 6, 36, 120, 210, 300, 630, 1176, 2016, 3240, 3570, 4950, 7140, 7260, 10296, 14196, 19110, 23436, 25200, 32640, 39060, 41616, 52326, 61776, 64980, 79800, 97020, 116886, 139656, 145530, 165600, 195000, 228150, 242556, 265356, 304590, 306936, 349866, 353220, 404550, 426426, 461280
Offset: 1

Views

Author

Antonio Roldán, Jan 07 2015

Keywords

Comments

Supersequence of A083374, because A083374(n)= n^2 * (n^2 - 1)/2 = n*(n+1)/2*n*(n-1), product of triangular number n*(n+1)/2 and oblong number n*(n-1).

Examples

			630 is in the sequence because it is a triangular number (630 = 35*36/2) and 630 = 105*6, with 105 = 14*15/2, triangular number, and 6 = 2*3, oblong number.
		

Crossrefs

Programs

  • PARI
    {i=0;j=1;print1(0,", ");while(i<=10^6,k=1;p=2;c=0;while(k0,c=k);if(c>0,print1(i,", "));k+=p;p+=1);i+=j;j+=1)}

A295769 Triangular numbers that can be represented as a product of two triangular numbers greater than 1, and as a product of three triangular numbers greater than 1.

Original entry on oeis.org

630, 990, 4095, 15400, 19110, 25200, 37128, 61425, 79800, 105570, 122265, 145530, 176715, 192510, 437580, 500500, 749700, 828828, 1185030, 2031120, 2162160, 2821500, 4279275, 4573800, 4744740, 4959675, 5364450, 6053460, 7556328, 8817900, 13857480, 15992340
Offset: 1

Views

Author

Alex Ratushnyak, Nov 27 2017

Keywords

Comments

Duplicates in the products are allowed.
A subsequence of A188630.

Examples

			630 = 105*6 = 21*10*3.
990 = 66*15 = 55*6*3.
		

Crossrefs

Programs

  • Maple
    A295769 := proc(limit) local t,E,G,n,k,j,c,b,d,ist; E:=NULL; G:=NULL;
    t := proc(n) option remember; iquo(n*(n+1), 2) end;
    ist := proc(n) option remember; n = t(floor(sqrt(2*n))) end;
    for n from 2 do
        c := t(n); if c > limit then break fi;
        for k from 2 do
            b := c*t(k); if b > limit then break fi;
            if ist(b) then E := E, b fi;
            for j from 2 do
                d := b*t(j); if d > limit then break fi;
                if ist(d) then G := G, d fi
    od od od; {E} intersect {G} end:
    A295769(200000); # Peter Luschny, Dec 21 2017
Showing 1-10 of 20 results. Next