cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A188630 Triangular numbers that are the product of two triangular numbers greater than 1.

Original entry on oeis.org

36, 45, 210, 630, 780, 990, 1540, 2850, 3570, 4095, 4851, 8778, 11781, 15400, 17955, 19110, 21528, 25200, 26565, 26796, 33930, 37128, 40755, 43956, 61425, 61776, 70125, 79800, 105570, 113050, 122265, 145530, 176715, 189420, 192510, 246753, 270480, 303810, 349866, 437580, 500500, 526851
Offset: 1

Views

Author

T. D. Noe, Apr 06 2011

Keywords

Comments

For squares, it is a simple matter to find squares that are the product of squares greater than 1. Is there a simple procedure for triangular numbers? That is, given n, is it easy to determine whether T(n) is the product of T(i) * T(j) for some i,j > 1?
Breiteig mentions this problem, but does not solve it. The problem can be extended to any polygonal number; for example, when is a pentagonal number the product of two pentagonal numbers? See A188660 and A188663 for the oblong and pentagonal cases.
Sequence A001571 gives the indices of triangular numbers that are 3 times another triangular number. For example, A001571(4) is 132; T(132) is 8778, which equals 3*T(76). Note that A061278 is the companion sequence, whose 4th term is 76. As with the oblong numbers covered by Breiteig, the triangular numbers in this sequence appear to satisfy linear recursions.

Examples

			210 = T(20) = 10 * 21 = T(4) * T(6).
		

Crossrefs

Cf. A000217 (triangular numbers), A085780 (products of two triangular numbers), A140089 (products of two triangular numbers > 1).
Subsequence of A068143 (more than 2 factors allowed).
See also A379609.

Programs

  • Maple
    A188630 := proc(limit) local t,E,n,k,c,b,ist; E:=NULL;
    t := proc(n) option remember; iquo(n*(n+1), 2) end;
    ist := proc(n) option remember; n = t(floor(sqrt(2*n))) end;
    for n from 2 do
        c := t(n); if c > limit then break fi;
        for k from 2 do
            b := c*t(k); if b > limit then break fi;
            if ist(b) then E := E, b fi;
    od od; sort({E}) end:
    A188630(200000); # Peter Luschny, Dec 21 2017
  • Mathematica
    TriangularQ[n_] := IntegerQ[Sqrt[1 + 8 n]]; TriIndex[n_] := Floor[(-1 + Sqrt[1 + 8*n])/2]; lim = 10^6; nMax = TriIndex[lim/3]; tri = Table[n (n + 1)/2, {n, 2, nMax}]; Union[Reap[Do[num = tri[[i]]*tri[[j]]; If[TriangularQ[num], Sow[num]], {i, TriIndex[Sqrt[lim]]}, {j, i, TriIndex[lim/tri[[i]]] - 1}]][[2, 1]]]
    Module[{upto=530000,maxr},maxr=Ceiling[(Sqrt[1+8*Ceiling[upto/3]]-1)/2]; Union[Select[Times@@@Tuples[Rest[Accumulate[Range[maxr]]],2], IntegerQ[ Sqrt[1+8#]]&&#<=upto&]]] (* Harvey P. Dale, Jun 12 2012 *)

A085780 Numbers that are a product of 2 triangular numbers.

Original entry on oeis.org

0, 1, 3, 6, 9, 10, 15, 18, 21, 28, 30, 36, 45, 55, 60, 63, 66, 78, 84, 90, 91, 100, 105, 108, 120, 126, 135, 136, 150, 153, 165, 168, 171, 190, 198, 210, 216, 225, 231, 234, 253, 270, 273, 276, 280, 300, 315, 325, 330, 351, 360, 378, 396, 406, 408, 420, 435, 441
Offset: 1

Views

Author

Jon Perry, Jul 23 2003

Keywords

Comments

Is there a fast algorithm for detecting these numbers? - Charles R Greathouse IV, Jan 26 2013
The number of rectangles with positive width 1<=w<=i and positive height 1<=h<=j contained in an i*j rectangle is t(i)*t(j), where t(k)=A000217(k), see A096948. - Dimitri Boscainos, Aug 27 2015

Examples

			18 = 3*6 = t(2)*t(3) is a product of two triangular numbers and therefore in the sequence.
		

Crossrefs

Cf. A000217, A085782, A068143, A000537 (subsequence), A006011 (subsequence), A033487 (subsequence), A188630 (subsequence).
Cf. A072389 (this times 4).

Programs

  • Maple
    isA085780 := proc(n)
         local d;
         for d in numtheory[divisors](n) do
            if d^2 > n then
                return false;
            end if;
            if isA000217(d) then
                if isA000217(n/d) then
                    return true;
                end if;
            end if;
        end do:
        return false;
    end proc:
    for n from 1 to 1000 do
        if isA085780(n) then
            printf("%d,",n) ;
        end if ;
    end do: # R. J. Mathar, Nov 29 2015
  • Mathematica
    t1 = Table[n (n+1)/2, {n, 0, 100}];Select[Union[Flatten[Outer[Times, t1, t1]]], # <= t1[[-1]] &] (* T. D. Noe, Jun 04 2012 *)
  • PARI
    A003056(n)=(sqrtint(8*n+1)-1)\2
    list(lim)=my(v=List([0]),t); for(a=1, A003056(lim\1), t=a*(a+1)/2; for(b=a, A003056(lim\t), listput(v,t*b*(b+1)/2))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jan 26 2013
    
  • Python
    from itertools import count, islice
    from sympy import divisors, integer_nthroot
    def A085780_gen(startvalue=0): # generator of terms
        if startvalue <= 0:
            yield 0
        for n in count(max(startvalue,1)):
            for d in divisors(m:=n<<2):
                if d**2 > m:
                    break
                if integer_nthroot((d<<2)+1,2)[1] and integer_nthroot((m//d<<2)+1,2)[1]:
                    yield n
                    break
    A085780_list = list(islice(A085780_gen(),10)) # Chai Wah Wu, Aug 28 2022

Formula

Conjecture: There are about sqrt(x)*log(x) terms up to x. - Charles R Greathouse IV, Jul 11 2024

Extensions

More terms from Max Alekseyev and Jon E. Schoenfield, Sep 04 2009

A363636 Indices of numbers of the form k^2+1, k >= 0, that can be written as a product of smaller numbers of that same form.

Original entry on oeis.org

0, 3, 7, 13, 17, 18, 21, 31, 38, 43, 47, 57, 68, 73, 91, 99, 111, 117, 123, 132, 133, 157, 183, 211, 241, 242, 253, 255, 268, 273, 293, 302, 307, 313, 322, 327, 343, 381, 413, 421, 438, 443, 463, 487, 507, 515, 553, 557, 577, 593, 601, 651, 693, 697, 703, 707
Offset: 1

Views

Author

Pontus von Brömssen, Jun 19 2023

Keywords

Comments

For the corresponding sequence for numbers of the form k^3+1 instead of k^2+1, the only terms known to me are 0 and 26, with 26^3+1 = (2^3+1)^2*(6^3+1).

Examples

			0 is a term because 0^2+1 = 1 equals the empty product.
3 is a term because 3^2+1 = 10 = 2*5 = (1^2+1)*(2^2+1).
38 is a term because 38^2+1 = 1445 = 5*17*17 = (2^2+1)*(4^2+1)^2. (This is the first term that requires more than two factors.)
		

Crossrefs

Sequences that list those terms (or their indices or some other key) of a given sequence that are products of smaller terms of the same sequence (in other words, the nonprimitive terms of the multiplicative closure of the sequence):
this sequence (A002522),

Programs

  • Mathematica
    g[lst_, p_] :=
      Module[{t, i, j},
       Union[Flatten[Table[t = lst[[i]]; t[[j]] = p*t[[j]];
          Sort[t], {i, Length[lst]}, {j, Length[lst[[i]]]}], 1],
        Table[Sort[Append[lst[[i]], p]], {i, Length[lst]}]]];
    multPartition[n_] :=
      Module[{i, j, p, e, lst = {{}}}, {p, e} =
        Transpose[FactorInteger[n]];
       Do[lst = g[lst, p[[i]]], {i, Length[p]}, {j, e[[i]]}]; lst];
    output = Join[{0}, Flatten[Position[Table[
         test = Sqrt[multPartition[n^2 + 1][[2 ;; All]] - 1];
         Count[AllTrue[#, IntegerQ] & /@ test, True] > 0
         , {n, 707}], True]]]
    (* David Trimas, Jul 23 2023 *)

A374498 Square array read by antidiagonals: row n lists n-gonal pyramidal numbers that are products of smaller n-gonal pyramidal numbers.

Original entry on oeis.org

1, 36, 1, 45, 560, 1, 210, 19600, 4900, 1, 300, 43680, 513590, 56448, 1, 378, 45760, 333833500, 127008, 4750, 1, 630, 893200, 711410700, 259200, 1926049000, 58372180608, 1
Offset: 2

Views

Author

Pontus von Brömssen, Jul 09 2024

Keywords

Comments

If there are only finitely many solutions for a certain value of n, the rest of that row is filled with 0's.
The first term in each row is 1, because 1 is an n-gonal pyramidal number for every n and it equals the empty product.

Examples

			Array begins:
  n\k| 1     2          3            4
  ---+--------------------------------
  2  | 1    36         45          210
  3  | 1   560      19600        43680
  4  | 1  4900     513590    333833500
  5  | 1 56448     127008       259200
  6  | 1  4750 1926049000 655578709500
		

Crossrefs

Cf. A080851, A374370, A374499 (second column).
Rows: A068143 (n=2 except the first term), A364151 (n=3), A374500 (n=4), A374501 (n=5), A374502 (n=6).

A364151 Tetrahedral numbers that are products of smaller tetrahedral numbers.

Original entry on oeis.org

1, 560, 19600, 43680, 45760, 893200, 1521520, 7207200, 29269240, 2845642800, 22778408800, 26595476600, 59777945920, 199910480000, 239526427140, 249466897680, 283345302240, 3280499995500, 20894643369600, 115333903584900, 408688050971200, 706949015272500, 4613394351142500
Offset: 1

Views

Author

Pontus von Brömssen, Jul 15 2023

Keywords

Examples

			1 is a term because 1 is a tetrahedral number and equals the empty product.
560 is a term because 560 = C(16,3) = C(5,3) * C(8,3). (C(n,k) is the binomial coefficient.)
45760 is a term because 45760 = C(66,3) = C(4,3)^2 * C(5,3) * C(13,3).
3280499995500 is a term because 3280499995500 = C(27001,3) = C(4,3) * C(15,3) * C(31,3) * C(135,3).
		

Crossrefs

Cf. A000292, A068143 (analog for triangular numbers), A196568 (only two factors allowed), A363636, A364152.
Row n=3 of A374498.

Extensions

More terms from Jinyuan Wang, Jul 31 2023

A374370 Square array read by antidiagonals: the n-th row lists n-gonal numbers that are products of smaller n-gonal numbers.

Original entry on oeis.org

1, 4, 1, 6, 36, 1, 8, 45, 16, 1, 9, 210, 36, 10045, 1, 10, 300, 64, 11310, 2850, 1, 12, 378, 81, 20475, 61776, 6426, 1, 14, 630, 100, 52360, 79800, 9828, 1408, 1, 15, 780, 144, 197472, 103740, 35224, 61920, 265926, 1, 16, 990, 196, 230300, 145530, 60606, 67200, 391950, 69300, 1
Offset: 2

Views

Author

Pontus von Brömssen, Jul 07 2024

Keywords

Comments

If there are only finitely many solutions for a certain value of n, the rest of that row is filled with 0's.
The first term in each row is 1, because 1 is an n-gonal number for every n and it equals the empty product.

Examples

			Array begins:
   n=2: 1,      4,       6,       8,       9,       10,       12,       14
   n=3: 1,     36,      45,     210,     300,      378,      630,      780
   n=4: 1,     16,      36,      64,      81,      100,      144,      196
   n=5: 1,  10045,   11310,   20475,   52360,   197472,   230300,   341055
   n=6: 1,   2850,   61776,   79800,  103740,   145530,   437580,   719400
   n=7: 1,   6426,    9828,   35224,   60606,  1349460,  2077992,  3333330
   n=8: 1,   1408,   61920,   67200,  276640,   297045,   870485,  1022000
   n=9: 1, 265926,  391950, 1096200, 1767546,  1787500,  9909504, 28123200
  n=10: 1,  69300, 1297890, 4257000, 5756400,  9140040,  9729720, 10648800
  n=11: 1,  79135,  792330, 2382380, 5570565, 15361500, 22230000, 49888395
  n=12: 1,   9504,   45696,  604128, 1981980,  2208465,  4798080, 13837824
		

Crossrefs

Cf. A057145, A374371 (second column), A374498.
Rows: A018252 (n=2), A068143 (n=3 except first term), A062312 (n=4), A374372 (n=5), A374373 (n=6).

A374374 Oblong numbers that are products of smaller oblong numbers.

Original entry on oeis.org

12, 72, 240, 420, 600, 1056, 1260, 2352, 4032, 6480, 7140, 9120, 9900, 10920, 14280, 14520, 18360, 20592, 20880, 28392, 38220, 46872, 50400, 65280, 78120, 82656, 83232, 104652, 123552, 129960, 147840, 159600, 194040, 233772, 245520, 262656, 278256, 279312
Offset: 1

Views

Author

Pontus von Brömssen, Jul 07 2024

Keywords

Comments

The oblong number (k^2+2*k)*(k^2+2*k+1) = A047928(k+2) is a term for all k >= 1, because it is the product of the oblong numbers k*(k+1) and (k+1)*(k+2).

Examples

			72 is a term because 72 = 8*9 = 6*12 = (2*3)*(3*4).
1056 is a term because 1056 = 32*33 = 2*2*2*132 = (1*2)*(1*2)*(1*2)*(11*12). (This is the first term that requires more than two factors.)
		

Crossrefs

A188660 is a subsequence (only 2 factors allowed).

A364152 Least n-simplex number (i.e., number of the form C(m,n) = binomial(m,n), m >= n), that can be written as a product of two or more smaller n-simplex numbers, or 0 if no such number exists.

Original entry on oeis.org

4, 36, 560, 20475, 126
Offset: 1

Views

Author

Pontus von Brömssen, Jul 15 2023

Keywords

Comments

When n = k^2+3*k+1 is in A028387, C(n+k+3,n) = C(n+1,n) * C(n+k+1,n), so 0 != a(n) <= C(n+k+3,n). It appears that equality holds (verified for 0 <= k <= 100). In particular, a(11) = C(16,11) = 4368, a(19) = C(25,19) = 177100, a(29) = C(36,29) = 8347680, a(41) = C(49,41) = 450978066, ... .
a(34) = 4923689695575 = C(50,34) = C(35,34)*C(47,34).
a(6) > 10^29 (unless a(6) = 0). - Pontus von Brömssen, Jul 14 2024

Examples

			a(1) =     4 = C( 4, 1) = C(2,1) * C(2,1).
a(2) =    36 = C( 9, 2) = C(4,2)^2.
a(3) =   560 = C(16, 3) = C(5,3) * C(8,3). (Also, C(16,3) = C(4,3)^2 * C(7,3)).
a(4) = 20475 = C(28, 4) = C(6,4) * C(15,4).
a(5) =   126 = C( 9, 5) = C(6,5) * C(7,5).
		

Crossrefs

a(1)-a(3) are the first terms greater than 1 in A018252, A068143, and A364151, respectively.
Cf. A028387.

A380825 Indices of triangular numbers that are the products of triangular numbers larger than 1.

Original entry on oeis.org

8, 9, 20, 24, 27, 35, 39, 44, 54, 55, 75, 80, 84, 90, 98, 99, 104, 132, 135, 153, 175, 189, 195, 207, 224, 230, 231, 252, 260, 272, 275, 279, 285, 296, 324, 350, 351, 374, 399, 405, 440, 455, 459, 475, 494, 539, 560, 567, 575, 594, 615, 620, 624, 665, 675
Offset: 1

Views

Author

Kelvin Voskuijl, Feb 04 2025

Keywords

Examples

			20 is a term as the 20th triangular number is 210 = 21*10 both triangular numbers.
24 is also a term since the 24th triangular number is 300 = 3*10*10.
		

Crossrefs

Formula

a(n) = A003056(A068143(n)).
A000217(a(n)) = A068143(n).
Showing 1-9 of 9 results.