A188630
Triangular numbers that are the product of two triangular numbers greater than 1.
Original entry on oeis.org
36, 45, 210, 630, 780, 990, 1540, 2850, 3570, 4095, 4851, 8778, 11781, 15400, 17955, 19110, 21528, 25200, 26565, 26796, 33930, 37128, 40755, 43956, 61425, 61776, 70125, 79800, 105570, 113050, 122265, 145530, 176715, 189420, 192510, 246753, 270480, 303810, 349866, 437580, 500500, 526851
Offset: 1
210 = T(20) = 10 * 21 = T(4) * T(6).
Cf.
A000217 (triangular numbers),
A085780 (products of two triangular numbers),
A140089 (products of two triangular numbers > 1).
Subsequence of
A068143 (more than 2 factors allowed).
-
A188630 := proc(limit) local t,E,n,k,c,b,ist; E:=NULL;
t := proc(n) option remember; iquo(n*(n+1), 2) end;
ist := proc(n) option remember; n = t(floor(sqrt(2*n))) end;
for n from 2 do
c := t(n); if c > limit then break fi;
for k from 2 do
b := c*t(k); if b > limit then break fi;
if ist(b) then E := E, b fi;
od od; sort({E}) end:
A188630(200000); # Peter Luschny, Dec 21 2017
-
TriangularQ[n_] := IntegerQ[Sqrt[1 + 8 n]]; TriIndex[n_] := Floor[(-1 + Sqrt[1 + 8*n])/2]; lim = 10^6; nMax = TriIndex[lim/3]; tri = Table[n (n + 1)/2, {n, 2, nMax}]; Union[Reap[Do[num = tri[[i]]*tri[[j]]; If[TriangularQ[num], Sow[num]], {i, TriIndex[Sqrt[lim]]}, {j, i, TriIndex[lim/tri[[i]]] - 1}]][[2, 1]]]
Module[{upto=530000,maxr},maxr=Ceiling[(Sqrt[1+8*Ceiling[upto/3]]-1)/2]; Union[Select[Times@@@Tuples[Rest[Accumulate[Range[maxr]]],2], IntegerQ[ Sqrt[1+8#]]&<=upto&]]] (* Harvey P. Dale, Jun 12 2012 *)
A085780
Numbers that are a product of 2 triangular numbers.
Original entry on oeis.org
0, 1, 3, 6, 9, 10, 15, 18, 21, 28, 30, 36, 45, 55, 60, 63, 66, 78, 84, 90, 91, 100, 105, 108, 120, 126, 135, 136, 150, 153, 165, 168, 171, 190, 198, 210, 216, 225, 231, 234, 253, 270, 273, 276, 280, 300, 315, 325, 330, 351, 360, 378, 396, 406, 408, 420, 435, 441
Offset: 1
18 = 3*6 = t(2)*t(3) is a product of two triangular numbers and therefore in the sequence.
-
isA085780 := proc(n)
local d;
for d in numtheory[divisors](n) do
if d^2 > n then
return false;
end if;
if isA000217(d) then
if isA000217(n/d) then
return true;
end if;
end if;
end do:
return false;
end proc:
for n from 1 to 1000 do
if isA085780(n) then
printf("%d,",n) ;
end if ;
end do: # R. J. Mathar, Nov 29 2015
-
t1 = Table[n (n+1)/2, {n, 0, 100}];Select[Union[Flatten[Outer[Times, t1, t1]]], # <= t1[[-1]] &] (* T. D. Noe, Jun 04 2012 *)
-
A003056(n)=(sqrtint(8*n+1)-1)\2
list(lim)=my(v=List([0]),t); for(a=1, A003056(lim\1), t=a*(a+1)/2; for(b=a, A003056(lim\t), listput(v,t*b*(b+1)/2))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jan 26 2013
-
from itertools import count, islice
from sympy import divisors, integer_nthroot
def A085780_gen(startvalue=0): # generator of terms
if startvalue <= 0:
yield 0
for n in count(max(startvalue,1)):
for d in divisors(m:=n<<2):
if d**2 > m:
break
if integer_nthroot((d<<2)+1,2)[1] and integer_nthroot((m//d<<2)+1,2)[1]:
yield n
break
A085780_list = list(islice(A085780_gen(),10)) # Chai Wah Wu, Aug 28 2022
A363636
Indices of numbers of the form k^2+1, k >= 0, that can be written as a product of smaller numbers of that same form.
Original entry on oeis.org
0, 3, 7, 13, 17, 18, 21, 31, 38, 43, 47, 57, 68, 73, 91, 99, 111, 117, 123, 132, 133, 157, 183, 211, 241, 242, 253, 255, 268, 273, 293, 302, 307, 313, 322, 327, 343, 381, 413, 421, 438, 443, 463, 487, 507, 515, 553, 557, 577, 593, 601, 651, 693, 697, 703, 707
Offset: 1
0 is a term because 0^2+1 = 1 equals the empty product.
3 is a term because 3^2+1 = 10 = 2*5 = (1^2+1)*(2^2+1).
38 is a term because 38^2+1 = 1445 = 5*17*17 = (2^2+1)*(4^2+1)^2. (This is the first term that requires more than two factors.)
Sequences that list those terms (or their indices or some other key) of a given sequence that are products of smaller terms of the same sequence (in other words, the nonprimitive terms of the multiplicative closure of the sequence):
-
g[lst_, p_] :=
Module[{t, i, j},
Union[Flatten[Table[t = lst[[i]]; t[[j]] = p*t[[j]];
Sort[t], {i, Length[lst]}, {j, Length[lst[[i]]]}], 1],
Table[Sort[Append[lst[[i]], p]], {i, Length[lst]}]]];
multPartition[n_] :=
Module[{i, j, p, e, lst = {{}}}, {p, e} =
Transpose[FactorInteger[n]];
Do[lst = g[lst, p[[i]]], {i, Length[p]}, {j, e[[i]]}]; lst];
output = Join[{0}, Flatten[Position[Table[
test = Sqrt[multPartition[n^2 + 1][[2 ;; All]] - 1];
Count[AllTrue[#, IntegerQ] & /@ test, True] > 0
, {n, 707}], True]]]
(* David Trimas, Jul 23 2023 *)
A374498
Square array read by antidiagonals: row n lists n-gonal pyramidal numbers that are products of smaller n-gonal pyramidal numbers.
Original entry on oeis.org
1, 36, 1, 45, 560, 1, 210, 19600, 4900, 1, 300, 43680, 513590, 56448, 1, 378, 45760, 333833500, 127008, 4750, 1, 630, 893200, 711410700, 259200, 1926049000, 58372180608, 1
Offset: 2
Array begins:
n\k| 1 2 3 4
---+--------------------------------
2 | 1 36 45 210
3 | 1 560 19600 43680
4 | 1 4900 513590 333833500
5 | 1 56448 127008 259200
6 | 1 4750 1926049000 655578709500
A364151
Tetrahedral numbers that are products of smaller tetrahedral numbers.
Original entry on oeis.org
1, 560, 19600, 43680, 45760, 893200, 1521520, 7207200, 29269240, 2845642800, 22778408800, 26595476600, 59777945920, 199910480000, 239526427140, 249466897680, 283345302240, 3280499995500, 20894643369600, 115333903584900, 408688050971200, 706949015272500, 4613394351142500
Offset: 1
1 is a term because 1 is a tetrahedral number and equals the empty product.
560 is a term because 560 = C(16,3) = C(5,3) * C(8,3). (C(n,k) is the binomial coefficient.)
45760 is a term because 45760 = C(66,3) = C(4,3)^2 * C(5,3) * C(13,3).
3280499995500 is a term because 3280499995500 = C(27001,3) = C(4,3) * C(15,3) * C(31,3) * C(135,3).
A374370
Square array read by antidiagonals: the n-th row lists n-gonal numbers that are products of smaller n-gonal numbers.
Original entry on oeis.org
1, 4, 1, 6, 36, 1, 8, 45, 16, 1, 9, 210, 36, 10045, 1, 10, 300, 64, 11310, 2850, 1, 12, 378, 81, 20475, 61776, 6426, 1, 14, 630, 100, 52360, 79800, 9828, 1408, 1, 15, 780, 144, 197472, 103740, 35224, 61920, 265926, 1, 16, 990, 196, 230300, 145530, 60606, 67200, 391950, 69300, 1
Offset: 2
Array begins:
n=2: 1, 4, 6, 8, 9, 10, 12, 14
n=3: 1, 36, 45, 210, 300, 378, 630, 780
n=4: 1, 16, 36, 64, 81, 100, 144, 196
n=5: 1, 10045, 11310, 20475, 52360, 197472, 230300, 341055
n=6: 1, 2850, 61776, 79800, 103740, 145530, 437580, 719400
n=7: 1, 6426, 9828, 35224, 60606, 1349460, 2077992, 3333330
n=8: 1, 1408, 61920, 67200, 276640, 297045, 870485, 1022000
n=9: 1, 265926, 391950, 1096200, 1767546, 1787500, 9909504, 28123200
n=10: 1, 69300, 1297890, 4257000, 5756400, 9140040, 9729720, 10648800
n=11: 1, 79135, 792330, 2382380, 5570565, 15361500, 22230000, 49888395
n=12: 1, 9504, 45696, 604128, 1981980, 2208465, 4798080, 13837824
A374374
Oblong numbers that are products of smaller oblong numbers.
Original entry on oeis.org
12, 72, 240, 420, 600, 1056, 1260, 2352, 4032, 6480, 7140, 9120, 9900, 10920, 14280, 14520, 18360, 20592, 20880, 28392, 38220, 46872, 50400, 65280, 78120, 82656, 83232, 104652, 123552, 129960, 147840, 159600, 194040, 233772, 245520, 262656, 278256, 279312
Offset: 1
72 is a term because 72 = 8*9 = 6*12 = (2*3)*(3*4).
1056 is a term because 1056 = 32*33 = 2*2*2*132 = (1*2)*(1*2)*(1*2)*(11*12). (This is the first term that requires more than two factors.)
A188660 is a subsequence (only 2 factors allowed).
A364152
Least n-simplex number (i.e., number of the form C(m,n) = binomial(m,n), m >= n), that can be written as a product of two or more smaller n-simplex numbers, or 0 if no such number exists.
Original entry on oeis.org
4, 36, 560, 20475, 126
Offset: 1
a(1) = 4 = C( 4, 1) = C(2,1) * C(2,1).
a(2) = 36 = C( 9, 2) = C(4,2)^2.
a(3) = 560 = C(16, 3) = C(5,3) * C(8,3). (Also, C(16,3) = C(4,3)^2 * C(7,3)).
a(4) = 20475 = C(28, 4) = C(6,4) * C(15,4).
a(5) = 126 = C( 9, 5) = C(6,5) * C(7,5).
A380825
Indices of triangular numbers that are the products of triangular numbers larger than 1.
Original entry on oeis.org
8, 9, 20, 24, 27, 35, 39, 44, 54, 55, 75, 80, 84, 90, 98, 99, 104, 132, 135, 153, 175, 189, 195, 207, 224, 230, 231, 252, 260, 272, 275, 279, 285, 296, 324, 350, 351, 374, 399, 405, 440, 455, 459, 475, 494, 539, 560, 567, 575, 594, 615, 620, 624, 665, 675
Offset: 1
20 is a term as the 20th triangular number is 210 = 21*10 both triangular numbers.
24 is also a term since the 24th triangular number is 300 = 3*10*10.
Showing 1-9 of 9 results.
Comments