cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A363636 Indices of numbers of the form k^2+1, k >= 0, that can be written as a product of smaller numbers of that same form.

Original entry on oeis.org

0, 3, 7, 13, 17, 18, 21, 31, 38, 43, 47, 57, 68, 73, 91, 99, 111, 117, 123, 132, 133, 157, 183, 211, 241, 242, 253, 255, 268, 273, 293, 302, 307, 313, 322, 327, 343, 381, 413, 421, 438, 443, 463, 487, 507, 515, 553, 557, 577, 593, 601, 651, 693, 697, 703, 707
Offset: 1

Views

Author

Pontus von Brömssen, Jun 19 2023

Keywords

Comments

For the corresponding sequence for numbers of the form k^3+1 instead of k^2+1, the only terms known to me are 0 and 26, with 26^3+1 = (2^3+1)^2*(6^3+1).

Examples

			0 is a term because 0^2+1 = 1 equals the empty product.
3 is a term because 3^2+1 = 10 = 2*5 = (1^2+1)*(2^2+1).
38 is a term because 38^2+1 = 1445 = 5*17*17 = (2^2+1)*(4^2+1)^2. (This is the first term that requires more than two factors.)
		

Crossrefs

Sequences that list those terms (or their indices or some other key) of a given sequence that are products of smaller terms of the same sequence (in other words, the nonprimitive terms of the multiplicative closure of the sequence):
this sequence (A002522),

Programs

  • Mathematica
    g[lst_, p_] :=
      Module[{t, i, j},
       Union[Flatten[Table[t = lst[[i]]; t[[j]] = p*t[[j]];
          Sort[t], {i, Length[lst]}, {j, Length[lst[[i]]]}], 1],
        Table[Sort[Append[lst[[i]], p]], {i, Length[lst]}]]];
    multPartition[n_] :=
      Module[{i, j, p, e, lst = {{}}}, {p, e} =
        Transpose[FactorInteger[n]];
       Do[lst = g[lst, p[[i]]], {i, Length[p]}, {j, e[[i]]}]; lst];
    output = Join[{0}, Flatten[Position[Table[
         test = Sqrt[multPartition[n^2 + 1][[2 ;; All]] - 1];
         Count[AllTrue[#, IntegerQ] & /@ test, True] > 0
         , {n, 707}], True]]]
    (* David Trimas, Jul 23 2023 *)

A374498 Square array read by antidiagonals: row n lists n-gonal pyramidal numbers that are products of smaller n-gonal pyramidal numbers.

Original entry on oeis.org

1, 36, 1, 45, 560, 1, 210, 19600, 4900, 1, 300, 43680, 513590, 56448, 1, 378, 45760, 333833500, 127008, 4750, 1, 630, 893200, 711410700, 259200, 1926049000, 58372180608, 1
Offset: 2

Views

Author

Pontus von Brömssen, Jul 09 2024

Keywords

Comments

If there are only finitely many solutions for a certain value of n, the rest of that row is filled with 0's.
The first term in each row is 1, because 1 is an n-gonal pyramidal number for every n and it equals the empty product.

Examples

			Array begins:
  n\k| 1     2          3            4
  ---+--------------------------------
  2  | 1    36         45          210
  3  | 1   560      19600        43680
  4  | 1  4900     513590    333833500
  5  | 1 56448     127008       259200
  6  | 1  4750 1926049000 655578709500
		

Crossrefs

Cf. A080851, A374370, A374499 (second column).
Rows: A068143 (n=2 except the first term), A364151 (n=3), A374500 (n=4), A374501 (n=5), A374502 (n=6).

A374375 Positive numbers of the form k*(k+1)*(k+2) that are products of smaller numbers of that same form.

Original entry on oeis.org

720, 262080, 43243200, 85765680, 14366626560, 27680637600, 8916100427520, 2871098559070560, 5720836667515200, 20123426048544000, 924491486191094640, 297683700627082714560
Offset: 1

Views

Author

Pontus von Brömssen, Jul 07 2024

Keywords

Comments

All terms are divisible by 36, because the number k*(k+1)*(k+2) is always divisible by 6 so a product of at least 2 such factors is divisible by 36. The first 12 terms are even divisible by 720.
a(13) > 4.5*10^22 if it exists. - David A. Corneth, Jul 12 2024
b(F(2*k)^2-1) is a term for all k >= 2, where b(k) = k*(k+1)*(k+2) = A007531(k+2) and F = A000045 is the Fibonacci sequence, because b(F(2*k)^2-1) = b(F(2*k-1)-1)*b(F(2*k+1)-1). In particular, a(13) <= b(F(20)^2-1) = 95853241822852400000400. - Pontus von Brömssen, Jul 13 2024

Examples

			With b(k) = k*(k+1)*(k+2) = A007531(k+2), we have the following factorizations of the first 12 terms:
                    720 =       b(8) = 6*120 = b(1)*b(4);
                 262080 =      b(63) = 120*2184 = b(4)*b(12);
               43243200 =     b(350) = 120*210*1716 = b(4)*b(5)*b(11);
               85765680 =     b(440) = 2184*39270 = b(12)*b(33);
            14366626560 =    b(2430) = 24*60*1716*5814 = b(2)*b(3)*b(11)*b(17);
            27680637600 =    b(3024) = 39270*704880 = b(33)*b(88);
          8916100427520 =   b(20735) = 704880*12649104 = b(88)*b(232);
       2871098559070560 =  b(142128) = 12649104*226980390 = b(232)*b(609);
       5720836667515200 =  b(178848) = 6*210*373176*12166770 = b(1)*b(5)*b(71)*b(229);
      20123426048544000 =  b(271998) = 6*210*328440*48626760 = b(1)*b(5)*b(68)*b(364);
     924491486191094640 =  b(974168) = 226980390*4073001576 = b(609)*b(1596);
  297683700627082714560 = b(6677055) = 4073001576*73087057560 = b(1596)*b(4180).
		

Crossrefs

Extensions

a(8)-a(11) from Michael S. Branicky, Jul 07 2024
a(12) from David A. Corneth, Jul 12 2024

A196568 Binomial coefficients of the form C(k, 3) that are products of two other binomial coefficients of the form C(k, 3).

Original entry on oeis.org

560, 19600, 43680, 893200, 1521520, 7207200, 29269240, 2845642800, 26595476600, 249466897680
Offset: 1

Views

Author

Kausthub Gudipati, Oct 04 2011

Keywords

Comments

a(11), if it exists, > C(5*10^6, 3). - D. S. McNeil, Oct 26 2011

Examples

			     560 = C( 16, 3) = C( 8, 3) * C( 5, 3);
   19600 = C( 50, 3) = C(16, 3) * C( 7, 3);
   43680 = C( 65, 3) = C(14, 3) * C(10, 3);
  893200 = C(176, 3) = C(30, 3) * C(12, 3).
		

Crossrefs

Subsequence of A364151 (more than 2 factors allowed).
Cf. A188630 (analog for triangular numbers).

Extensions

Name clarified by Pontus von Brömssen, Jun 22 2023

A364152 Least n-simplex number (i.e., number of the form C(m,n) = binomial(m,n), m >= n), that can be written as a product of two or more smaller n-simplex numbers, or 0 if no such number exists.

Original entry on oeis.org

4, 36, 560, 20475, 126
Offset: 1

Views

Author

Pontus von Brömssen, Jul 15 2023

Keywords

Comments

When n = k^2+3*k+1 is in A028387, C(n+k+3,n) = C(n+1,n) * C(n+k+1,n), so 0 != a(n) <= C(n+k+3,n). It appears that equality holds (verified for 0 <= k <= 100). In particular, a(11) = C(16,11) = 4368, a(19) = C(25,19) = 177100, a(29) = C(36,29) = 8347680, a(41) = C(49,41) = 450978066, ... .
a(34) = 4923689695575 = C(50,34) = C(35,34)*C(47,34).
a(6) > 10^29 (unless a(6) = 0). - Pontus von Brömssen, Jul 14 2024

Examples

			a(1) =     4 = C( 4, 1) = C(2,1) * C(2,1).
a(2) =    36 = C( 9, 2) = C(4,2)^2.
a(3) =   560 = C(16, 3) = C(5,3) * C(8,3). (Also, C(16,3) = C(4,3)^2 * C(7,3)).
a(4) = 20475 = C(28, 4) = C(6,4) * C(15,4).
a(5) =   126 = C( 9, 5) = C(6,5) * C(7,5).
		

Crossrefs

a(1)-a(3) are the first terms greater than 1 in A018252, A068143, and A364151, respectively.
Cf. A028387.
Showing 1-5 of 5 results.