cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A346919 Numbers that are both palindromes (A002113) and terms of A072389.

Original entry on oeis.org

0, 4, 252, 2112, 2772, 6336, 21012, 27072, 42924, 48384, 48984, 63036, 252252, 297792, 407704, 2327232, 2572752, 2747472, 2774772, 2958592, 4457544, 4811184, 6378736, 6396936, 25777752, 27633672, 29344392, 63099036, 63399336, 404080404, 409757904, 441525144
Offset: 1

Views

Author

Dumitru Damian, Aug 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    p[n_] :=  n*(n + 1); m = 1000; Select[Union[ Times @@@ Tuples[p /@ Range[0, m], {2}]], # <= 2*p[m] && PalindromeQ[#] &] (* Amiram Eldar, Aug 13 2021 *)
  • SageMath
    # the sequence numbers up to a limit
    def a346919_upto(lim, alst=set([0])):
        for i in range(1, int(lim**0.25)):
            for j in range(i, int((lim/(i*(i+1)))**0.5)+1):
                if all([(k:=i*(i+1)*j*(j+1))<=lim, str(k)==str(k)[::-1]]): alst.add(k)
        return sorted(alst)
    print(a346919_upto(10**9)) # Dumitru Damian, Apr 05 2023

Formula

Intersection of A072389 and A002113.
Intersection of 4*A085780 and A002113.

Extensions

More terms from Jinyuan Wang, Aug 07 2021

A085780 Numbers that are a product of 2 triangular numbers.

Original entry on oeis.org

0, 1, 3, 6, 9, 10, 15, 18, 21, 28, 30, 36, 45, 55, 60, 63, 66, 78, 84, 90, 91, 100, 105, 108, 120, 126, 135, 136, 150, 153, 165, 168, 171, 190, 198, 210, 216, 225, 231, 234, 253, 270, 273, 276, 280, 300, 315, 325, 330, 351, 360, 378, 396, 406, 408, 420, 435, 441
Offset: 1

Views

Author

Jon Perry, Jul 23 2003

Keywords

Comments

Is there a fast algorithm for detecting these numbers? - Charles R Greathouse IV, Jan 26 2013
The number of rectangles with positive width 1<=w<=i and positive height 1<=h<=j contained in an i*j rectangle is t(i)*t(j), where t(k)=A000217(k), see A096948. - Dimitri Boscainos, Aug 27 2015

Examples

			18 = 3*6 = t(2)*t(3) is a product of two triangular numbers and therefore in the sequence.
		

Crossrefs

Cf. A000217, A085782, A068143, A000537 (subsequence), A006011 (subsequence), A033487 (subsequence), A188630 (subsequence).
Cf. A072389 (this times 4).

Programs

  • Maple
    isA085780 := proc(n)
         local d;
         for d in numtheory[divisors](n) do
            if d^2 > n then
                return false;
            end if;
            if isA000217(d) then
                if isA000217(n/d) then
                    return true;
                end if;
            end if;
        end do:
        return false;
    end proc:
    for n from 1 to 1000 do
        if isA085780(n) then
            printf("%d,",n) ;
        end if ;
    end do: # R. J. Mathar, Nov 29 2015
  • Mathematica
    t1 = Table[n (n+1)/2, {n, 0, 100}];Select[Union[Flatten[Outer[Times, t1, t1]]], # <= t1[[-1]] &] (* T. D. Noe, Jun 04 2012 *)
  • PARI
    A003056(n)=(sqrtint(8*n+1)-1)\2
    list(lim)=my(v=List([0]),t); for(a=1, A003056(lim\1), t=a*(a+1)/2; for(b=a, A003056(lim\t), listput(v,t*b*(b+1)/2))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jan 26 2013
    
  • Python
    from itertools import count, islice
    from sympy import divisors, integer_nthroot
    def A085780_gen(startvalue=0): # generator of terms
        if startvalue <= 0:
            yield 0
        for n in count(max(startvalue,1)):
            for d in divisors(m:=n<<2):
                if d**2 > m:
                    break
                if integer_nthroot((d<<2)+1,2)[1] and integer_nthroot((m//d<<2)+1,2)[1]:
                    yield n
                    break
    A085780_list = list(islice(A085780_gen(),10)) # Chai Wah Wu, Aug 28 2022

Formula

Conjecture: There are about sqrt(x)*log(x) terms up to x. - Charles R Greathouse IV, Jul 11 2024

Extensions

More terms from Max Alekseyev and Jon E. Schoenfield, Sep 04 2009

A053990 Numbers of the form x*(x + 1)*y*(y + 1) ("bipronics") where x and y are distinct.

Original entry on oeis.org

0, 12, 24, 40, 60, 72, 84, 112, 120, 144, 180, 220, 240, 252, 264, 312, 336, 360, 364, 420, 432, 480, 504, 540, 544, 600, 612, 660, 672, 684, 760, 792, 840, 864, 924, 936, 1012, 1080, 1092, 1104, 1120, 1200, 1260, 1300, 1320, 1404, 1440, 1512, 1584, 1624
Offset: 1

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Apr 04 2000

Keywords

Examples

			Taking x=1, y=2 gives 2 * 6 =12
		

Crossrefs

Programs

  • Mathematica
    bipr[{a_,b_}]:=a(a+1)b(b+1); Take[Union[bipr/@Subsets[Range[0,40], {2}]],50] (* Harvey P. Dale, Jun 01 2012 *)

Extensions

More terms from James Sellers, Apr 22 2000

A386303 Positive integers k such that the set {d+k/d : d|k} contains four consecutive integers.

Original entry on oeis.org

15120, 712800, 3341520, 10533600, 23284800, 85503600, 147026880, 171097920, 302702400, 477338400, 2058376320, 2633510880, 4204418400, 7342876800, 9673606800, 13035884400, 13734761040, 14895223200, 22388788800, 22647794400, 26108082000, 34183749600, 62246804400, 89169141600
Offset: 1

Views

Author

Giedrius Alkauskas, Jul 18 2025

Keywords

Comments

a(n) is divisible by 720.
Subsequence of A072389 (with two consecutive instead of four).
Integers k with five consecutive integers in the set {d+k/d : d|k} seem not to exist.
As terms must be of the form k * (k + 1) * m * (m + 1) and divisible by 720 we can restrict the search based on g = gcd(k * (k + 1), 720) which is at least 2. We must have (720 / g) | m * (m + 1). - David A. Corneth, Jul 19 2025
If q is the number of divisors of a(n) then the first of these four divisors is generally d[q/2 + 1] at least for nonsquares. For three consecutive integers (cf. A386302) there is the exception 180180. - David A. Corneth, Jul 20 2025

Examples

			a(1)=15120=M is a term of this sequence since 105, 108, 112, 120 are divisors of M, and 120+M/120=246, 112+M/112=247, 108+M/108=248, 105+M/105=249. It is the first term since no smaller such positive integer exists.
		

Crossrefs

Programs

  • Maple
    M:=2*10^10:
    Ki:={}:
    Vi:=floor(sqrt(2*M)):
    Ski:=floor((19*M)^(1/4)/2):
    for F from 1 to Vi-4 do
      for y from 1 to min(floor((Vi-F)/2),Ski) do
         G:=F+2*y+1:
         if issqr(2*F^2-G^2+2) and issqr(3*F^2-2*G^2+6) then
           x:=(F+G-1)/2:
           n:=x*(x+1)*y*(y+1):
           Ki:=Ki union {n}:
         end if:
      end do:
    end do:
    Ki;

Extensions

More terms from David A. Corneth, Jul 19 2025

A049207 Array T(m,n) of products of pronic numbers m(m+1) * n(n+1) read by antidiagonals ("bipronics").

Original entry on oeis.org

0, 0, 0, 0, 4, 0, 0, 12, 12, 0, 0, 24, 36, 24, 0, 0, 40, 72, 72, 40, 0, 0, 60, 120, 144, 120, 60, 0, 0, 84, 180, 240, 240, 180, 84, 0, 0, 112, 252, 360, 400, 360, 252, 112, 0, 0, 144, 336, 504, 600, 600, 504, 336, 144, 0, 0, 180, 432, 672, 840, 900, 840, 672, 432, 180, 0, 0
Offset: 0

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Jul 20 2002

Keywords

Examples

			Array begins
0 0 0 0 0 0 ...
0 4 12 24 40 ...
0 12 36 72 120 ...
0 24 72 144 240 ...
		

Crossrefs

Programs

  • Maple
    T := (m,n)->m*(m+1)*n*(n+1): seq(seq(T(q-p,p),p=0..q),q=0..12);

Extensions

Corrected and extended by Emeric Deutsch, Mar 04 2004

A218391 Let k be the n-th odd composite, then a(n) is the smallest w*x such that w + x = (k-1)/2, y + z = (k+1)/2, and w*x = y*z.

Original entry on oeis.org

4, 12, 24, 36, 40, 60, 72, 84, 112, 144, 144, 180, 180, 220, 252, 264, 312, 360, 364, 432, 420, 504, 480, 540, 544, 612, 684, 792, 760, 864, 900, 840, 936, 924, 1080, 1012, 1104, 1260, 1260, 1200, 1300, 1440, 1404, 1584, 1512, 1764, 1624, 1836, 1740, 1860
Offset: 1

Views

Author

Bill McEachen, Oct 27 2012

Keywords

Comments

If a number w + x + y + z with w, x, y, z > 0 has w*x = y*z then it is composite.
Appears to be a subset of A072389. - Bill McEachen, Feb 14 2025

Examples

			15=7+8 (partition is x,x+1)
col 1 sum(to products)
1*6=6
2*5=10
3*4=12
col 2 sum(to products)
1*7=7
2*6=12
3*5=15
4*4=16
There is an overlapping product, and the lowest is 12.
This indicates the original N of 15 is composite.
		

Crossrefs

Cf. A071904.

Programs

  • PARI
    do(n)=my(X=vector(n\4,i,i*(n\2-i)),Y=vector((n+1)\4,i,i*(n\2-i+1)),i=1,j=1);while(X[i]!=Y[j],if(X[i]Charles R Greathouse IV, Oct 28 2012

A352796 Numbers m such that {d + m/d : d | m } does not contain consecutive integers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74
Offset: 1

Views

Author

Keywords

Comments

Conjecture: Complement of A072389.

Crossrefs

Programs

  • Mathematica
    S[n_]:=Divisors[n]+n/Divisors[n]//Union; Test[n_]:= {aux=S[n];Union[ {False},Table[aux[[i+1]]-aux[[i]] ==1,{i,Length[aux]-1}]]}[[1]]   //Last; Select[Range[1000],Test[#]&]
  • PARI
    isok(m) = my(list=List()); fordiv(m, d, listput(list, d+m/d)); my(w = Set(vector(#list-1, k, list[k+1]-list[k]))); #select(x->(x==1), w) == 0; \\ Michel Marcus, Jun 09 2022
    
  • Python
    from sympy import divisors
    def ok(n):
        s = sorted(set(d + n//d for d in divisors(n)))
        return 1 not in set(s[i+1]-s[i] for i in range(len(s)-1))
    print([k for k in range(1, 75) if ok(k)]) # Michael S. Branicky, Jul 10 2022

A386302 Positive integers k such that the set {d+k/d : d|k} contains three consecutive integers.

Original entry on oeis.org

144, 180, 1260, 1440, 2520, 5040, 5544, 7200, 14040, 15120, 25200, 31680, 33660, 37800, 46800, 59400, 62244, 65520, 70560, 83160, 107100, 110880, 115920, 166320, 169344, 176400, 180180, 183600, 190944, 221760, 277200, 287280, 297540
Offset: 1

Views

Author

Giedrius Alkauskas, Jul 17 2025

Keywords

Comments

Terms are divisible by 36.
Subsequence of A072389 (with two consecutive rather than three).

Examples

			a(1)=144, since 144/12+12=24, 144/9+9=25, 144/8+8=26, and no smaller integer with such property exists.
		

Crossrefs

Programs

  • Maple
    M:=300000:
    Ki:={}:
    Vi:=floor(sqrt(2*M)):
    Ski:=floor((19*M)^(1/4)/2):
    for F from 1 to Vi-4 do
      for y from 1 to min(floor((Vi-F)/2),Ski) do
         G:=F+2*y+1:
         if issqr(2*F^2-G^2+2) then
           x:=(F+G-1)/2;
           n:=x*(x+1)*y*(y+1):
           Ki:=Ki union {n}:
         end if:
      end do:
    end do:
    Ki;
  • PARI
    isok(m, nb=3) = nb--; my(v = Set(apply(x->x+m/x, divisors(m)))); if (#v >= nb, select(x->(x==nb), vector(#v-nb, k, v[k+nb]-v[k]))); \\ Michel Marcus, Jul 18 2025

A274187 Least number that is the product of n consecutive positive numbers and the product of 2 oblong numbers.

Original entry on oeis.org

4, 12, 24, 24, 120, 5040, 5040, 362880, 362880, 3628800, 39916800, 6227020800, 6227020800, 3379030566912000
Offset: 1

Views

Author

Gionata Neri, Jun 12 2016

Keywords

Examples

			a(3) = 24 = 2*3*4 = 2*12.
a(6) = 5040 = 2*3*4*5*6*7 = 12*420 = 56*90.
		

Crossrefs

Programs

  • Maple
    N:= 10^10: # to get all terms <= N
    A072389:= {seq(seq(n*(n+1)*m*(m+1),m=n..floor((sqrt(1+4*N/(n*(n+1))-1)/2))),n=1..floor((sqrt(1+2*N)-1)/2))}:
    for n from 1 do
      x:= n!;
      for m from 1 while x <= N and not member(x, A072389) do
        x:= x*(n+m)/m
      od;
      if x > N then break fi;
      A[n]:= x;
    od:
    seq(A[i],i=1..n-1); # Robert Israel, Jun 16 2016

Extensions

a(14) from Robert Israel, Jun 16 2016
Showing 1-9 of 9 results.