cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A072389 Numbers of the form x*(x+1) * y*(y+1) ("bipronics") with x and y nonnegative integers.

Original entry on oeis.org

0, 4, 12, 24, 36, 40, 60, 72, 84, 112, 120, 144, 180, 220, 240, 252, 264, 312, 336, 360, 364, 400, 420, 432, 480, 504, 540, 544, 600, 612, 660, 672, 684, 760, 792, 840, 864, 900, 924, 936, 1012, 1080, 1092, 1104, 1120, 1200, 1260, 1300, 1320
Offset: 1

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Jul 20 2002

Keywords

Comments

Nonnegative numbers k = a*b = c*d, where a+b = c+d+1. - Yifan Xie, Jun 28 2024

Examples

			a(3) = 1*2*2*3 = 12.
		

Crossrefs

Cf. A053990 (sequence of bipronics with x and y distinct).
Cf. A085780 (one quarter of this).

Programs

Extensions

More terms from James Sellers, Jul 23 2002

A054731 Numbers of the form x*(x + 1)*y*(y + 1)/4 where x and y are distinct.

Original entry on oeis.org

0, 3, 6, 10, 15, 18, 21, 28, 30, 36, 45, 55, 60, 63, 66, 78, 84, 90, 91, 105, 108, 120, 126, 135, 136, 150, 153, 165, 168, 171, 190, 198, 210, 216, 231, 234, 253, 270, 273, 276, 280, 300, 315, 325, 330, 351, 360, 378, 396, 406, 408, 420, 435, 450, 459, 465, 468
Offset: 1

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Apr 22 2000

Keywords

Crossrefs

Cf. A053990, A054734. Contains all triangular numbers >1.

Programs

  • Mathematica
    With[{upto=500},Select[Union[(#[[1]](#[[1]]+1)#[[2]](#[[2]]+1))/4&/@ Subsets[ Range[0,Floor[upto/2]],{2}]],#<=upto&]] (* Harvey P. Dale, Jan 15 2015 *)

Formula

a(n) = A053990(n) / 4. - Sean A. Irvine, Feb 19 2022

Extensions

More terms from James Sellers, Apr 22 2000

A054734 Numbers of the form 2*x*(x + 1)*y*(y + 1) where x and y are distinct.

Original entry on oeis.org

0, 24, 48, 80, 120, 144, 168, 224, 240, 288, 360, 440, 480, 504, 528, 624, 672, 720, 728, 840, 864, 960, 1008, 1080, 1088, 1200, 1224, 1320, 1344, 1368, 1520, 1584, 1680, 1728, 1848, 1872, 2024, 2160, 2184, 2208, 2240, 2400, 2520, 2600, 2640, 2808
Offset: 1

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Apr 22 2000

Keywords

Crossrefs

Formula

a(n) = 2 * A053990(n). - Sean A. Irvine, Feb 20 2022

Extensions

More terms from James Sellers, Apr 22 2000

A049207 Array T(m,n) of products of pronic numbers m(m+1) * n(n+1) read by antidiagonals ("bipronics").

Original entry on oeis.org

0, 0, 0, 0, 4, 0, 0, 12, 12, 0, 0, 24, 36, 24, 0, 0, 40, 72, 72, 40, 0, 0, 60, 120, 144, 120, 60, 0, 0, 84, 180, 240, 240, 180, 84, 0, 0, 112, 252, 360, 400, 360, 252, 112, 0, 0, 144, 336, 504, 600, 600, 504, 336, 144, 0, 0, 180, 432, 672, 840, 900, 840, 672, 432, 180, 0, 0
Offset: 0

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Jul 20 2002

Keywords

Examples

			Array begins
0 0 0 0 0 0 ...
0 4 12 24 40 ...
0 12 36 72 120 ...
0 24 72 144 240 ...
		

Crossrefs

Programs

  • Maple
    T := (m,n)->m*(m+1)*n*(n+1): seq(seq(T(q-p,p),p=0..q),q=0..12);

Extensions

Corrected and extended by Emeric Deutsch, Mar 04 2004
Showing 1-4 of 4 results.