cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128508 Number of partitions p of n such that max(p) - min(p) = 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 3, 3, 7, 7, 12, 14, 20, 22, 32, 34, 45, 51, 63, 69, 87, 93, 112, 124, 144, 156, 184, 196, 225, 245, 275, 295, 335, 355, 396, 426, 468, 498, 552, 582, 637, 679, 735, 777, 847, 889, 960, 1016, 1088, 1144, 1232, 1288, 1377, 1449, 1539, 1611, 1719
Offset: 0

Views

Author

John W. Layman, May 07 2007

Keywords

Comments

See A008805 and A049820 for the numbers of partitions p of n such that max(p)-min(p)=1 or 2, respectively.

Crossrefs

Programs

  • Mathematica
    np[n_]:=Length[Select[IntegerPartitions[n],Max[#]-Min[#]==3&]]; Array[np,60] (* Harvey P. Dale, Jul 02 2012 *)

Formula

Conjecture. a(1)=0 and, for n>1, a(n+1)=a(n)+d(n), where d(n) is defined as follows: d=0,0,0,1,0 for n=1,...,5 and, for n>5, d(n)=d(n-2)+1 if n=6k or n=6k+4, d(n)=d(n-2) if n=6k+1 or n=6k+3, d(n)=d(n-2)+2Floor[n/6] if n=6k+2 and d(n)=d(n-5) if n=6k+5.
G.f. for number of partitions p of n such that max(p)-min(p) = m is Sum_{k>0} x^(2*k+m)/Product_{i=0..m} (1-x^(k+i)). - Vladeta Jovovic, Jul 04 2007
a(n) = A097364(n,3) = A116685(n,3) = A117143(n) - A117142(n). - Alois P. Heinz, Nov 02 2012

Extensions

More terms from Vladeta Jovovic, Jul 04 2007