cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A126099 Number of 3-indecomposable (connected) graphs on n nodes.

Original entry on oeis.org

1, 1, 1, 2, 6, 21, 7, 10, 10, 15, 15, 21, 21, 28, 28, 36, 36, 45, 45, 55, 55, 66, 66, 78, 78, 91, 91, 105, 105, 120, 120, 136, 136, 153, 153, 171, 171, 190, 190, 210, 210, 231, 231, 253, 253, 276, 276, 300, 300, 325, 325, 351, 351, 378, 378, 406, 406, 435, 435, 465, 465, 496
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Mar 05 2007

Keywords

Comments

See A124593 for definition.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{1,1,1,2,6,21,7,10,10,15,15,21,21},70] (* Harvey P. Dale, Sep 18 2019 *)
  • PARI
    Vec(x*(1-2*x^2+x^3+5*x^4+13*x^5-22*x^6-26*x^7+32*x^8+14*x^9-14*x^10-x^11) / ((1-x)^3*(1+x)^2) + O(x^50)) \\ Colin Barker, May 27 2016

Formula

G.f.: x/((1-x)*(1-x^2)^2) + 1 - x^3 + 3*x^4 + 15*x^5 + x^6.
From Colin Barker, May 27 2016: (Start)
a(n) = (-1+(-1)^n+2*(1+(-1)^n)*n+2*n^2)/16 for n>7.
a(n) = (n^2+2*n)/8 for n>7 and even.
a(n) = (n^2-1)/8 for n>7 and odd.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>12.
G.f.: x*(1-2*x^2+x^3+5*x^4+13*x^5-22*x^6-26*x^7+32*x^8+14*x^9-14*x^10-x^11) / ((1-x)^3*(1+x)^2).
(End)

A128526 Number of 4-indecomposable (connected) graphs on n nodes.

Original entry on oeis.org

1, 1, 1, 2, 6, 21, 112, 853, 111, 181, 323, 437, 717, 1198, 1606, 2454, 3782, 4997, 7245, 10543, 13711, 19092, 26612, 34076, 45948, 61930, 78154, 102654, 134670, 167688, 215496, 276480, 340080, 429030, 540246, 657162, 815994, 1011264, 1217712, 1491336, 1822920, 2174898, 2631618, 3178230, 3760086, 4501332, 5378868, 6314748, 7487964, 8863635
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Mar 07 2007

Keywords

Comments

See A124593 for definition.

Crossrefs

Formula

G.f.: x/((1-x)*(1-x^2)^2*(1-x^3)^8) + 1 - x^3 - 5*x^4 + 7*x^5 + 82*x^6 + 783*x^7 + 17*x^8 + 10*x^9.

A128528 Number of 6-indecomposable (connected) graphs on n nodes.

Original entry on oeis.org

1, 1, 1, 2, 6, 21, 112, 853, 11117, 261080, 11716571, 1006700565, 164159, 422662, 1295037, 4272969, 12780650, 23303620, 64379033, 189490870, 556338383, 1448500351, 2871171041, 7624849834, 20914847051, 55714746424, 133364472272, 277569288280, 708402263349, 1827946074290, 4530654263579, 10312511072061, 22005420425661, 54057174050076, 132409684714581
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Mar 07 2007

Keywords

Comments

See A124593 for definition.

Crossrefs

Formula

G.f.: x/((1-x)*(1-x^2)^2*(1-x^3)^8*(1-x^4)^44*(1-x^5)^333) + 1 - x^3 - 5*x^4 - 37*x^5 - 295*x^6 + 318*x^7 + 9540*x^8 + 255640*x^9 + 11694624*x^10 + 1006613825*x^11 + 25539*x^12 + 25593*x^13 + 30877*x^14 + 34220*x^15
Showing 1-3 of 3 results.