cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128543 a(n) = floor(2^(n-2)*3*n).

Original entry on oeis.org

1, 6, 18, 48, 120, 288, 672, 1536, 3456, 7680, 16896, 36864, 79872, 172032, 368640, 786432, 1671168, 3538944, 7471104, 15728640, 33030144, 69206016, 144703488, 301989888, 629145600, 1308622848, 2717908992, 5637144576
Offset: 1

Views

Author

Gary W. Adamson, Mar 10 2007

Keywords

Comments

Also row sums of triangle A249111. - Reinhard Zumkeller, Nov 15 2014

Crossrefs

Programs

  • GAP
    Concatenation([1], List([2..40], n-> 3*n*2^(n-2))); # G. C. Greubel, Jul 11 2019
  • Haskell
    a128543 = sum . a134239_row . subtract 1
    -- Reinhard Zumkeller, Nov 15 2014
    
  • Magma
    I:=[1, 6, 18]; [n le 3 select I[n] else 4*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jun 28 2012
    
  • Mathematica
    CoefficientList[Series[(1+2*x-2*x^2)/(1-2*x)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 28 2012 *)
  • PARI
    a(n)=3*n*2^n\4 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [1]+[3*n*2^(n-2) for n in (2..40)] # G. C. Greubel, Jul 11 2019
    

Formula

Binomial transform of A007310 (assuming offset 0 in both sequences).
Row sums of triangle A134239. - Gary W. Adamson, Oct 14 2007
a(n) = 3*n*2^(n-2) for n>1. - R. J. Mathar, Oct 25 2011
From Colin Barker, Mar 22 2012: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) for n>3.
G.f.: x*(1+2*x-2*x^2)/(1-2*x)^2. (End)

Extensions

Definition corrected by M. F. Hasler, Nov 05 2014