cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128552 Column 2 of triangle A128545; a(n) is the coefficient of q^(2n+4) in the central q-binomial coefficient [2n+4,n+2].

Original entry on oeis.org

1, 3, 8, 18, 39, 75, 141, 251, 433, 724, 1185, 1892, 2972, 4588, 6981, 10480, 15553, 22821, 33164, 47746, 68163, 96542, 135747, 189550, 262997, 362691, 497339, 678300, 920417, 1242898, 1670688, 2235880, 2979809, 3955422, 5230471, 6891234
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2007

Keywords

Comments

Column 1 of triangle A128552 equals the partitions of n (A000041).
a(n) is the number of partitions of the integer 2n+4 into at most n+2 summands each of which is at most n+2. - Geoffrey Critzer, Sep 27 2013

Examples

			a(2) = 8 because we have: 4+4 = 4+3+1 = 4+2+2 = 4+2+1+1 = 3+3+2 = 3+3+1+1 = 3+2+2+1 = 2+2+2+2. - _Geoffrey Critzer_, Sep 27 2013
		

Crossrefs

Programs

  • Maple
    with(combinat): p:= numbpart:
    s:= proc(n) s(n):= p(n) +`if`(n>0, s(n-1), 0) end:
    a:= n-> p(2*n+4) -2*s(n+1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 27 2013
  • Mathematica
    Table[nn=2n;Coefficient[Series[Product[(1-x^(n+i))/(1-x^i),{i,1,n}],{x,0,nn}],x^(2n)],{n,1,37}] (* Geoffrey Critzer, Sep 27 2013 *)
  • PARI
    {a(n)=polcoeff(prod(j=n+3,2*n+4,1-q^j)/prod(j=1,n+2,1-q^j),2*n+4,q)}
    
  • PARI
    {a(n)=numbpart(2*n+4)-2*sum(k=0,n+1,numbpart(k))} \\ Paul D. Hanna, Feb 06 2013

Formula

a(n) = A000041(2*n+4) - 2*Sum_{k=0..n+1} A000041(k), where A000041(n) = number of partitions of n, due to a formula given in the Fu and Sellers paper. - Paul D. Hanna, Feb 06 2013