cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128617 Expansion of q^2 * psi(q) * psi(q^15) in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0
Offset: 1

Views

Author

Michael Somos, Mar 13 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also the number of positive odd solutions to equation x^2 + 15y^2 = 8n. - Seiichi Manyama, May 21 2017

Examples

			G.f. = x^2 + x^3 + x^5 + x^8 + x^12 + 2*x^17 + x^18 + x^20 + 2*x^23 + x^27 + x^30 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 377, Entry 9(i).

Crossrefs

Cf. A035162.

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ -60, #] - KroneckerSymbol[ 20, #] KroneckerSymbol[ -3, n/#] &] / 2]; (* Michael Somos, Nov 12 2015 *)
    a[ n_] := SeriesCoefficient[ q^2 (QPochhammer[ q^2] QPochhammer[ q^30])^2 / (QPochhammer[ q] QPochhammer[ q^15]), {q, 0, n}]; (* Michael Somos, Nov 12 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-60, d) - kronecker(20, d) * kronecker(-3, n/d) )/2)};
    
  • PARI
    {a(n) = my(A); if( n<2, 0, n-=2; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^30 + A))^2 / (eta(x + A) * eta(x^15 + A)), n))};

Formula

Expansion of (eta(q^2) * eta(q^30))^2 / (eta(q) * eta(q^15)) in powers of q.
Euler transform of period 30 sequence [ 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 2, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, ...].
For n>0, n in A028955 equivalent to a(n) nonzero. If a(n) nonzero, a(n) = A082451(n) and a(n) = -A121362(n).
a(n)= (A082451(n) - A121362(n) )/2.
G.f.: x^2 * Product_{k>0} (1 - x^k) * (1 - x^(15*k)) * (1 + x^(2*k))^2 * (1 + x^(30*k))^2.