A128617 Expansion of q^2 * psi(q) * psi(q^15) in powers of q where psi() is a Ramanujan theta function.
0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0
Offset: 1
Keywords
Examples
G.f. = x^2 + x^3 + x^5 + x^8 + x^12 + 2*x^17 + x^18 + x^20 + 2*x^23 + x^27 + x^30 + ...
References
- B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 377, Entry 9(i).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A035162.
Programs
-
Mathematica
a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ -60, #] - KroneckerSymbol[ 20, #] KroneckerSymbol[ -3, n/#] &] / 2]; (* Michael Somos, Nov 12 2015 *) a[ n_] := SeriesCoefficient[ q^2 (QPochhammer[ q^2] QPochhammer[ q^30])^2 / (QPochhammer[ q] QPochhammer[ q^15]), {q, 0, n}]; (* Michael Somos, Nov 12 2015 *)
-
PARI
{a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-60, d) - kronecker(20, d) * kronecker(-3, n/d) )/2)};
-
PARI
{a(n) = my(A); if( n<2, 0, n-=2; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^30 + A))^2 / (eta(x + A) * eta(x^15 + A)), n))};
Formula
Expansion of (eta(q^2) * eta(q^30))^2 / (eta(q) * eta(q^15)) in powers of q.
Euler transform of period 30 sequence [ 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 2, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, ...].
For n>0, n in A028955 equivalent to a(n) nonzero. If a(n) nonzero, a(n) = A082451(n) and a(n) = -A121362(n).
G.f.: x^2 * Product_{k>0} (1 - x^k) * (1 - x^(15*k)) * (1 + x^(2*k))^2 * (1 + x^(30*k))^2.
Comments