A128634 Number of parallel permutations of length n.
0, 2, 8, 26, 82, 262, 856, 2858, 9722, 33590, 117570, 416022, 1485798, 5348878, 19389688, 70715338, 259289578, 955277398, 3534526378, 13128240838, 48932534038, 182965127278, 686119227298, 2579808294646, 9723892802902, 36734706144302, 139067101832006, 527495903500718
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- T. Mansour and S. Severini, Grid polygons from permutations and their enumeration by the kernel method, arXiv:math/0603225 [math.CO], 2006.
Programs
-
GAP
List([1..30], n-> 2*(Binomial(2*n, n)/(n+1) -1) ); # G. C. Greubel, Dec 02 2019
-
Magma
[2*(Catalan(n)-1): n in [1..40]]; // Vincenzo Librandi, Jul 22 2015
-
Maple
c:=binomial(2*n,n)/(n+1); seq(2*(c(n)-1), n=1..30); # G. C. Greubel, Dec 02 2019
-
Mathematica
Table[2 (CatalanNumber[n] - 1), {n, 30}] (* Vincenzo Librandi, Jul 22 2015 *)
-
PARI
vector(30, n, 2*(binomial(2*n,n)/(n+1) -1) ) \\ Michel Marcus, Jul 21 2015
-
Sage
[2*(catalan_number(n) -1) for n in (1..30)] # G. C. Greubel, Dec 02 2019
Formula
a(n) = -2 + 2 * binomial(2*n,n)/(n+1).
a(n) = -2 + A068875(n+1).
a(n) = 2*A001453(n) for n > 1. - J. M. Bergot, Sep 03 2013
a(n)= Sum_{r=0..n} A214292(n, r)^2. - J. M. Bergot, Sep 04 2013
Extensions
More terms from Michel Marcus, Jul 21 2015
Offset changed by G. C. Greubel, Dec 02 2019