cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A123633 Expansion of (c(q^2)/c(q))^3 in powers of q where c() is a cubic AGM theta function.

Original entry on oeis.org

1, -3, 3, 5, -18, 15, 24, -75, 57, 86, -252, 183, 262, -744, 522, 725, -1998, 1365, 1852, -4986, 3336, 4436, -11736, 7719, 10103, -26322, 17067, 22040, -56682, 36306, 46336, -117867, 74700, 94378, -237744, 149277, 186926, -466836, 290706, 361126, -895014, 553224
Offset: 1

Views

Author

Michael Somos, Oct 03 2006, Jan 21 2009

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
In the arXiv:2305.13951 paper on page 21 is this: "The q-expansion of y coincides with the sequence A123633 in the OEIS". - Michael Somos, May 26 2023

Examples

			G.f. = q - 3*q^2 + 3*q^3 + 5*q^4 - 18*q^5 + 15*q^6 + 24*q^7 - 75*q^8 + 57*q^9 + ...
		

Crossrefs

Programs

  • Magma
    M := Basis(ModularForms(Gamma1(6), 1), 43); M1 := M[1]; M2 := M[2]; A := M2/(M1 + 2*M2); A; /* Michael Somos, May 26 2023 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ q / (QPochhammer[ q^3, q^6]^3 / QPochhammer[ q, q^2])^3, {q, 0, n}]; (* Michael Somos, Feb 19 2015 *)
    a[ n_] := SeriesCoefficient[ q (Product[ 1 - q^k, {k, 1, n, 2}] / Product[ 1 - q^k, {k, 3, n, 6}]^3)^3, {q, 0, n}]; (* Michael Somos, Feb 19 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^3 * (eta(x^6 + A) / eta(x^3 + A))^9, n))};
    

Formula

Expansion of q / (chi(-q^3)^3 / chi(-q))^3 in powers of q where chi() is a Ramanujan theta function.
Euler transform of period 6 sequence [ -3, 0, 6, 0, -3, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v)= u^2 - v - u*v * (6 + 8*v).
G.f.: x * (Product_{k>0} (1 - x^(2*k - 1)) / (1 - x^(6*k - 3))^3 )^3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (1 / 8) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128642.
A128636(n) = a(n) unless n = 0. Convolution inverse of A105559.
Convolution cube of A092848.
Convolution with A123330 is A093829. - Michael Somos, May 26 2023

A128641 Expansion of (1/3) * (c(q)^2 / c(q^2)) / (b(q^2)^2 / b(q)) in powers of q where b(), c() are cubic AGM theta functions.

Original entry on oeis.org

1, -1, 4, -10, 20, -39, 76, -140, 244, -415, 696, -1140, 1820, -2861, 4448, -6816, 10292, -15372, 22756, -33356, 48408, -69683, 99600, -141312, 199036, -278557, 387608, -536230, 737632, -1009464, 1374888, -1863764, 2514868, -3378948, 4521672, -6027000, 8002676
Offset: 0

Views

Author

Michael Somos, Mar 16 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - q + 4*q^2 - 10*q^3 + 20*q^4 - 39*q^5 + 76*q^6 - 140*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    eta[x_] := x^(1/24)*QPochhammer[x]; A128641[n_] := SeriesCoefficient[ (eta[q]/eta[q^6])*(eta[q^3]/eta[q^2])^5, {q, 0, n}]; Table[A128641[n], {n, 0, 50}] (* G. C. Greubel, Aug 22 2017 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) / eta(x^2 + A))^5 * eta(x + A) / eta(x^6 + A), n))};

Formula

Expansion of (phi(-q^3)^3 / phi(-q)) / (psi(q)^3 / psi(q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of (eta(q) / eta(q^6)) * (eta(q^3) / eta(q^2))^5 in powers of q.
Euler transform of period 6 sequence [ -1, 4, -6, 4, -1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u * (1-v) * (8-9*u) + (u-v)^2.
G.f.: Product_{k>0} (1 - x^k) / (1 - x^(6*k)) * ((1 - x^(3*k)) / (1 - x^(2*k)))^5.
A128640(n) = -a(n) unless n = 0. Convolution inverse of A128636.
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n/3)) / (2 * 3^(9/4) * n^(3/4)). - Vaclav Kotesovec, Jun 06 2018
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 2/3 - (2/9)*sqrt(3) + (2/9)*sqrt(6)*3^(1/4). - Simon Plouffe, Mar 04 2021
a(n) = (-1)^n*A164617(n). - Michael Somos, Apr 24 2023

A261321 Expansion of (phi(q) / phi(q^3))^2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 4, 4, -4, -12, -8, 12, 32, 20, -28, -72, -48, 60, 152, 96, -120, -300, -184, 228, 560, 344, -416, -1008, -608, 732, 1756, 1048, -1252, -2976, -1768, 2088, 4928, 2900, -3408, -7992, -4672, 5460, 12728, 7408, -8600, -19944, -11544, 13344, 30800, 17744, -20424
Offset: 0

Views

Author

Michael Somos, Aug 14 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The generating function is associated with a modular equation of degree 3 and is the multiplier denoted by "m". - Michael Somos, Nov 01 2017

Examples

			G.f. = 1 + 4*x + 4*x^2 - 4*x^3 - 12*x^4 - 8*x^5 + 12*x^6 + 32*x^7 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 230 Entry 5(iii), g.f. denoted by multiplier m.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] / EllipticTheta[ 3, 0, q^3])^2, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^10 * eta(x^3 + A)^4 * eta(x^12 + A)^4 / (eta(x + A)^4 * eta(x^4 + A)^4 * eta(x^6 + A)^10), n))};

Formula

Expansion of eta(q^2)^10 * eta(q^3)^4 * eta(q^12)^4 / (eta(q)^4 * eta(q^4)^4 * eta(q^6)^10) in powers of q.
G.f.: (Sum_{k in Z} x^k^2) / (Sum_{k in Z} x^(3*k^2))^2.
a(n) = -(1)^n * A217771(n). a(n) = 4 * A187153(n) = 4 * A213265(n) unless n=0.
a(2*n) = 4 * A123633(n) = 4 * A128636(n) unless n=0. a(3*n) = -4 * A228447(n) unless n=0.
Convolution inverse is A261320. Convolution square of A139137.
Showing 1-3 of 3 results.