cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128639 Expansion of (1/3) * (c(q)^2 / c(q^2)) / (b(q)^2 / b(q^2)) in powers of q where b(), c() are cubic AGM theta functions.

Original entry on oeis.org

1, 8, 40, 152, 488, 1392, 3640, 8896, 20584, 45512, 96816, 199200, 398072, 775216, 1475264, 2749776, 5029736, 9043344, 16005352, 27918304, 48047280, 81661504, 137183136, 227952960, 374924152, 610743224, 985891568, 1577869784, 2504850112, 3945854640, 6170415888
Offset: 0

Views

Author

Michael Somos, Mar 16 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 8*q + 40*q^2 + 152*q^3 + 488*q^4 + 1392*q^5 + 3640*q^6 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1 + x^k + x^(2*k)) / (1 - x^k + x^(2*k)))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x^3 + A) / eta(x + A))^2 * eta(x^2 + A) / eta(x^6 + A))^4, n))};

Formula

Expansion of (phi(-q^3) / phi(-q))^4 in powers of q where phi() is a Ramanujan theta function.
Expansion of ((eta(q^3) / eta(q))^2 * (eta(q^2) / eta(q^6)))^4 in powers of q.
Euler transform of period 6 sequence [ 8, 4, 0, 4, 8, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u * (1-v) * (1-9*v) - (u-v)^2.
G.f.: (Product_{k>0} (1 + x^k + x^(2*k)) / (1 - x^k + x^(2*k)) )^4.
a(n) = 8 * A128638(n) unless n = 0. Convolution inverse of A128637.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(3/4) * 3^(9/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 1/3 + (1/9)*sqrt(3) + (1/9)*sqrt(9+6*sqrt(3)). - Simon Plouffe, Mar 02 2021