A128639 Expansion of (1/3) * (c(q)^2 / c(q^2)) / (b(q)^2 / b(q^2)) in powers of q where b(), c() are cubic AGM theta functions.
1, 8, 40, 152, 488, 1392, 3640, 8896, 20584, 45512, 96816, 199200, 398072, 775216, 1475264, 2749776, 5029736, 9043344, 16005352, 27918304, 48047280, 81661504, 137183136, 227952960, 374924152, 610743224, 985891568, 1577869784, 2504850112, 3945854640, 6170415888
Offset: 0
Keywords
Examples
G.f. = 1 + 8*q + 40*q^2 + 152*q^3 + 488*q^4 + 1392*q^5 + 3640*q^6 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[Product[((1 + x^k + x^(2*k)) / (1 - x^k + x^(2*k)))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x^3 + A) / eta(x + A))^2 * eta(x^2 + A) / eta(x^6 + A))^4, n))};
Formula
Expansion of (phi(-q^3) / phi(-q))^4 in powers of q where phi() is a Ramanujan theta function.
Expansion of ((eta(q^3) / eta(q))^2 * (eta(q^2) / eta(q^6)))^4 in powers of q.
Euler transform of period 6 sequence [ 8, 4, 0, 4, 8, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u * (1-v) * (1-9*v) - (u-v)^2.
G.f.: (Product_{k>0} (1 + x^k + x^(2*k)) / (1 - x^k + x^(2*k)) )^4.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(3/4) * 3^(9/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 1/3 + (1/9)*sqrt(3) + (1/9)*sqrt(9+6*sqrt(3)). - Simon Plouffe, Mar 02 2021
Comments