A128657
Numbers k such that p(k+1)# - p(k)# - 1 is prime where p(i)# = product of first i primes = A002110(i).
Original entry on oeis.org
1, 2, 3, 4, 8, 24, 35, 56, 79, 132, 281, 342, 631, 1350, 4929, 5952, 8128
Offset: 1
-
isok(n) = {my(pp=prod(k=1, n, prime(k))); isprime(pp*prime(n+1) - pp -1);} \\ Michel Marcus, Sep 20 2019
A128658
Numbers k such that p(k+1)# - p(k)# + 1 is prime where p(i)# = product of first i primes = A002110(i).
Original entry on oeis.org
1, 3, 7, 14, 80, 224, 280, 287, 652, 1509, 2952, 3915, 7771
Offset: 1
-
isok(n) = {my(pp=prod(k=1, n, prime(k))); isprime(pp*prime(n+1) - pp + 1);} \\ Michel Marcus, Sep 20 2019
A128660
Numbers n such that p(n+1)#-p(n)#-p(n-1)#+1 is prime where p(i)#=product of first i primes=A002110(i).
Original entry on oeis.org
2, 6, 14, 15, 23, 31, 97, 144, 983, 2587, 3163, 6689
Offset: 1
-
Flatten[Position[#[[3]]-#[[2]]-#[[1]]+1&/@Partition[FoldList[Times,1,Prime[ Range[ 6700]]] ,3,1],?PrimeQ]] (* _Harvey P. Dale, Jul 25 2013 *)
A128661
Numbers k such that p(k+1)# + p(k)# - p(k-1)# - 1 is prime where p(i)# = product of first i primes = A002110(i).
Original entry on oeis.org
3, 7, 14, 15, 21, 32, 34, 47, 67, 69, 174, 369, 568, 3193, 3882, 5426
Offset: 1
A128662
Numbers k such that p(k+1)# + p(k)# - p(k-1)# + 1 is prime where p(i)# = product of first i primes = A002110(i).
Original entry on oeis.org
8, 13, 14, 15, 30, 41, 71, 85, 97, 132, 221, 282, 424, 509, 1346, 1348, 3684, 8224
Offset: 1
Showing 1-5 of 5 results.