cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A128657 Numbers k such that p(k+1)# - p(k)# - 1 is prime where p(i)# = product of first i primes = A002110(i).

Original entry on oeis.org

1, 2, 3, 4, 8, 24, 35, 56, 79, 132, 281, 342, 631, 1350, 4929, 5952, 8128
Offset: 1

Views

Author

Pierre CAMI, Mar 19 2007

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = {my(pp=prod(k=1, n, prime(k))); isprime(pp*prime(n+1) - pp -1);} \\ Michel Marcus, Sep 20 2019

Extensions

a(17) from Michael S. Branicky, Oct 06 2024

A128658 Numbers k such that p(k+1)# - p(k)# + 1 is prime where p(i)# = product of first i primes = A002110(i).

Original entry on oeis.org

1, 3, 7, 14, 80, 224, 280, 287, 652, 1509, 2952, 3915, 7771
Offset: 1

Views

Author

Pierre CAMI, Mar 19 2007

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = {my(pp=prod(k=1, n, prime(k))); isprime(pp*prime(n+1) - pp + 1);} \\ Michel Marcus, Sep 20 2019

Extensions

a(13) from Michael S. Branicky, Oct 06 2024

A128660 Numbers n such that p(n+1)#-p(n)#-p(n-1)#+1 is prime where p(i)#=product of first i primes=A002110(i).

Original entry on oeis.org

2, 6, 14, 15, 23, 31, 97, 144, 983, 2587, 3163, 6689
Offset: 1

Views

Author

Pierre CAMI, Mar 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Position[#[[3]]-#[[2]]-#[[1]]+1&/@Partition[FoldList[Times,1,Prime[ Range[ 6700]]] ,3,1],?PrimeQ]] (* _Harvey P. Dale, Jul 25 2013 *)

A128661 Numbers k such that p(k+1)# + p(k)# - p(k-1)# - 1 is prime where p(i)# = product of first i primes = A002110(i).

Original entry on oeis.org

3, 7, 14, 15, 21, 32, 34, 47, 67, 69, 174, 369, 568, 3193, 3882, 5426
Offset: 1

Views

Author

Pierre CAMI, Mar 19 2007

Keywords

Crossrefs

Programs

Extensions

a(14)-a(16) from Michael S. Branicky, Jul 22 2023

A128662 Numbers k such that p(k+1)# + p(k)# - p(k-1)# + 1 is prime where p(i)# = product of first i primes = A002110(i).

Original entry on oeis.org

8, 13, 14, 15, 30, 41, 71, 85, 97, 132, 221, 282, 424, 509, 1346, 1348, 3684, 8224
Offset: 1

Views

Author

Pierre CAMI, Mar 19 2007

Keywords

Crossrefs

Programs

Extensions

a(17) from Michael S. Branicky, Jun 23 2023
a(11) corrected and a(18) from Michael S. Branicky, Dec 11 2024
Showing 1-5 of 5 results.