cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A128657 Numbers k such that p(k+1)# - p(k)# - 1 is prime where p(i)# = product of first i primes = A002110(i).

Original entry on oeis.org

1, 2, 3, 4, 8, 24, 35, 56, 79, 132, 281, 342, 631, 1350, 4929, 5952, 8128
Offset: 1

Views

Author

Pierre CAMI, Mar 19 2007

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = {my(pp=prod(k=1, n, prime(k))); isprime(pp*prime(n+1) - pp -1);} \\ Michel Marcus, Sep 20 2019

Extensions

a(17) from Michael S. Branicky, Oct 06 2024

A128658 Numbers k such that p(k+1)# - p(k)# + 1 is prime where p(i)# = product of first i primes = A002110(i).

Original entry on oeis.org

1, 3, 7, 14, 80, 224, 280, 287, 652, 1509, 2952, 3915, 7771
Offset: 1

Views

Author

Pierre CAMI, Mar 19 2007

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = {my(pp=prod(k=1, n, prime(k))); isprime(pp*prime(n+1) - pp + 1);} \\ Michel Marcus, Sep 20 2019

Extensions

a(13) from Michael S. Branicky, Oct 06 2024

A128659 Numbers k such that p(k+1)# - p(k)# - p(k-1)# - 1 is prime, where p(i)# = product of first i primes = A002110(i).

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 9, 13, 14, 20, 30, 40, 44, 86, 101, 135, 152, 171, 205, 4404, 12227
Offset: 1

Views

Author

Pierre CAMI, Mar 19 2007

Keywords

Examples

			1 is a term since A002110(2) - A002110(1) - A002110(0) - 1 = 6 - 2 - 1 - 1 = 2.
		

Crossrefs

Programs

Extensions

a(1) = 1 inserted by Michael S. Branicky, May 07 2025
a(21) from Michael S. Branicky, May 10 2025

A128660 Numbers n such that p(n+1)#-p(n)#-p(n-1)#+1 is prime where p(i)#=product of first i primes=A002110(i).

Original entry on oeis.org

2, 6, 14, 15, 23, 31, 97, 144, 983, 2587, 3163, 6689
Offset: 1

Views

Author

Pierre CAMI, Mar 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Position[#[[3]]-#[[2]]-#[[1]]+1&/@Partition[FoldList[Times,1,Prime[ Range[ 6700]]] ,3,1],?PrimeQ]] (* _Harvey P. Dale, Jul 25 2013 *)

A128661 Numbers k such that p(k+1)# + p(k)# - p(k-1)# - 1 is prime where p(i)# = product of first i primes = A002110(i).

Original entry on oeis.org

3, 7, 14, 15, 21, 32, 34, 47, 67, 69, 174, 369, 568, 3193, 3882, 5426
Offset: 1

Views

Author

Pierre CAMI, Mar 19 2007

Keywords

Crossrefs

Programs

Extensions

a(14)-a(16) from Michael S. Branicky, Jul 22 2023
Showing 1-5 of 5 results.