A128677 Least k>p such that (kp)^3 divides (p-1)^(kp)^2+1 for prime p = A000040(n).
19, 41, 29, 23, 79, 41617, 20939, 47, 40427, 4093, 4441, 2543, 1033, 659, 2612032921, 394502321, 14958421, 17957, 569, 14747, 12641, 167, 174263, 100493, 285629
Offset: 2
Examples
a(2) = A127263(3)/3 = 57/3 = 19.
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{p, k}, p = Prime[n]; k = p + 1; While[! Divisible[(p - 1)^(k p)^2 + 1, (k p)^3], k++]; k]; Table[a[n], {n, 2, 15}] (* Robert Price, Mar 23 2020 *)
Formula
a(n) = smallest prime divisor of (p-1)^(p^2)+1 other than p, where p=A000040(n).
Extensions
a(16)-a(26), a(39), a(74) from Max Alekseyev, May 16 2010
Comments