cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128696 Alternating sum of the seventh powers of the first n Fibonacci numbers.

Original entry on oeis.org

0, -1, 0, -128, 2059, -76066, 2021086, -60727431, 1740361110, -50782989034, 1471652245341, -42759682650188, 1241158781898676, -36040175501820901, 1046363981321362852, -30381064378888637148, 882092032492683277335, -25611107658594421205278, 743603574761804566730466, -21590121866471006254739195, 626857059065125789349713930
Offset: 0

Views

Author

Stuart Clary, Mar 23 2007

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., 2177594, 80442, 2317, 130, 2, 1, 0, [0], -1, 0, -128, 2059, -76066, 2021086 ... This is A098533-reversed followed by A128696.

Crossrefs

Programs

  • Magma
    [(&+[(-1)^k*Fibonacci(k)^7: k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jan 17 2018
  • Mathematica
    a[ n_Integer ] := If[ n >= 0, Sum[ (-1)^k Fibonacci[ k ]^7, {k, 1, n} ], Sum[ -(-1)^k Fibonacci[ -k ]^7, {k, 1, -n - 1} ] ]
    Accumulate[Times@@@Partition[Riffle[Fibonacci[Range[0,30]]^7,{1,-1}], 2]] (* Harvey P. Dale, May 11 2012 *)
  • PARI
    a(n) = sum(k=1, n, (-1)^k*fibonacci(k)^7); \\ Michel Marcus, Dec 10 2016
    

Formula

Let F(n) be the Fibonacci number A000045(n).
a(n) = Sum_{k=1..n} (-1)^k F(k)^7.
Closed form: a(n) = (-1)^n (F(7n+7) - F(7n))/3625 + 7(F(5n+1) - 2 F(5n+4))/1375 + (-1)^n 21 F(3n+1)/250 - 7 F(n+2)/25 + 139/638.
Recurrence: a(n) + 20 a(n-1) - 294 a(n-2) - 819 a(n-3) + 2912 a(n-4) - 728 a(n-5) - 1365 a(n-6) + 252 a(n-7) + 22 a(n-8) - a(n-9) = 0.
G.f.: A(x) = (-x - 20 x^2 + 166 x^3 + 318 x^4 - 166 x^5 - 20 x^6 + x^7)/(1 + 20 x - 294 x^2 - 819 x^3 + 2912 x^4 - 728 x^5 - 1365 x^6 + 252 x^7 + 22 x^8 - x^9) = -x*(1 + 20 x - 166 x^2 - 318 x^3 + 166 x^4 + 20 x^5 - x^6)/ ((1 - x)*(1 - x - x^2)*(1 + 4 x - x^2)*(1 - 11 x - x^2)*(1 + 29 x - x^2)).